

EAAP 2010 61st Annual Meeting of the European Association for Animal Production

AUGUST 23rd-27th, 2010 - HERAKLION, CRETE ISLAND, GREECE

Effect of dietary cation-anion difference in dairy ewes at mid-lactation (S35, Abstr. #6, p. 266)

Schlageter A., Caja G.*, Ben Khedim M., Salama A.A.K., Carné S. & Albanell, E.

Grup de Recerca en Remugants (G2R), Departament de Ciencia Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra (Barcelona,Spain)

DCAD concept & interest:

Dietary Cation Anion Difference (DCAD, mEq per weight unit) is the difference between the ionic content in a feed or a ration:

$$DCAD = [\Sigma Cat+] - [\Sigma Ani-]$$

Main aim for DCAD adjustment is variation of the acid-base balance in the body (H⁺ load) and modifiying <u>blood Ca</u>.

DCAD equations (mEq/100 g DM):

Basic equations for main ions:

(Na⁺ + K⁺) - (Cl⁻ + S²⁻) = DCADs (Na⁺ + K⁺) - Cl⁻ DCADs ~ DCAD - 10

Extended and compensated equations:

 $(Na^{+} + K^{+} + Ca^{2+} + Mg^{2+}) - CI^{-}$ $(Na^{+} + K^{+} + Mg^{2+}) - CI^{-}$ $(Na^{+} + K^{+} + 0.38Ca^{2+} + 0.30Mg^{2+}) - (CI^{-} + 0.6S^{2-} + 0.5PO_{4}^{-3-})$ $(Na^{+} + K^{+} + 0.15Ca^{2+} + 0.15Mg^{2+}) - (CI^{-} + 0.2S^{2-} + 0.3PO_{4}^{-3-})$ $(Na^{+} + K^{+} + NH_{4}^{+}) - (CI^{-} + S^{2-})$ $(Na^{+} + K^{+} + 0.15Ca^{2+} + 0.15Mg^{2+}) - (CI^{-} + 0.6S^{2-} + 0.5PO_{4}^{-3-})$ $(Na^{+} + K^{+} + 0.15Ca^{2+} + 0.15Mg^{2+}) - (CI^{-} + 0.6S^{2-} + 0.5PO_{4}^{-3-})$

 $(Na^+ + K^+) - (Cl^- + 0.6 S^{2-})$

DCAD main effects:

Metabolic: Hu & Murphy (2004)

- Regulation of Acid-Base balance (blood pH)
- Prevention of hypo Ca at delivery
- Prevention of metabolic acidosis
- Alcalosis alleviation under heat stress (West et al., 1991)
- Productive: Hu & Murphy (2004), Meshy (2007)
 - Intake effects (negative?)
 - Milk yield effects
 - No effects on milk composition (normal conditions)
- Little information on small ruminants
 - Dairy goats (Meshy & Sauvant, 2002)
 - No information available on dairy sheep!

DCAD effects in dairy cows: DMI & MY (Hu and Murphy, 2004)

Meta-analysis:

 $DCAD = (Na^+ + K^+) - CI^-$

Quadratic effects on feed intake (DMI) and milk yield (MY):

 Peak of DMI at: +40 mEq/100 g of DM

Beede (2005), USDA (2007): DCADs = +25 to +30 (+20 to +40)

Objectives:

To study the effects of varying the DCAD values of a TMR in the lactational performances of ewes of 2 dairy breeds (same frame) at mid-lactation:

- Lacaune (high-yield, mid-composition)
- Manchega (mid-yield, high-composition)

Materials and Methods: 1/4

- 40 ewes of 2 dairy breeds (Manchega, n = 20; Lacaune, n = 20) at mid lactation (84 ± 27 DIM).
- Allocated in 8 groups of 5 ewes, blocked by breed, BW and milk yield.
- Dietary treatments applied in pens for 15 wk (adaptation, 4 wk; cova, 1 wk; measure, 10 wk), consisted of a TMR with different DCADs:
 - AN-5 = 6.6 mEq/100 g DM
 AN-25 = 26.3 mEq/100 g DM
 - CA-45 = 45.2 mEq/100 g DM
 - CA-65 = 64.1 mEq/100 g DM

DCAD changed by adding NH₄Cl, (NH₄)₂SO₄ and NaHCO₃

Materials and Methods: 2/4

- TMR formulated according to INRA (2007) by INRAtion 3.3 (16% CP, 1.25 Mcal EN_L; DM basis) and offered ad libitum (115%).
- TMR dosed daily, sampled weekly and analyzed for DM, OM, CP (Dumas method with a Leco analyzer), NDF, ADF and ether extract.
- Ca, P, Na, K, S and Mg analyzed by ICPOE (inductively coupled plasma optical emission spectrometry) and CI determined by the volumetric method (AOAC #915.01).
- PEG 6000 dosed orally (50 g/d) used as intake marker (15 d) and analyzed in rectal feces (5 d) by NIR (Caja et al., 2009).
- Milk sampled weekly and analyzed by NIR (TS, Fat, Protein and Cn).

Materials and Methods: 3/4

- Blood samples collected at morning feeding at wk 4 (3 ewes per pen), 8 and 10 (all ewes).
- Immediately analyzed after collection by i-Stat analyzer (Abbott, IL):
 - pH, pCO₂, TCO₂, HCO₃⁻, BaseExcess, Na⁺, K⁺, Cl⁻, urea, glucose, AnionGap, PCV (hematocrite) and Hb.
- Urine pH after voluntary micturation (within 3 d after blood sampling) by a portable pH-meter.

Materials and Methods: 4/4

Statistical analyses:

PROC MIXED SAS (v. 8.2) for repeated measurements.

General model:

1) Fixed factors

- Breed (Manchega or Lacaune)
- Treatment (AN-5, AN-25, CA-45, CA-65)
- Lactation number (primi- or multi-parous)
- Stage of lactation (wk)
- 2) Random factors
 - Animal within group (1 to 5)
 - 1st order interactions
 - Error

Covariated by wk 0 performances (ß) for DMI, BW, BCS, MY and milk components.

Results: 1/9

Effect of DCAD (mEq/100 g DM) on intake (DMI) of dairy ewes according to breed (values are LSM)

Item	AN-5	AN-25	CA-45	CA-65	SEM	<i>P</i> =
DMI, kg/d Manchega Lacaune Overall	1.95ª 2.59 2.25ª	2.30 ^{ab} 2.94 2.64 ^b	2.58 ^b 2.93 2.84 ^b	2.42 ^b 2.73 2.61 ^b	0.15 0.14 0.09	0.049 0.226 0.012
DMI/BW ^{0.75} , g/kg Manchega Lacaune Overall	73 ^a 102 ^a 86 ^a	93 ^b 123 ^b 108 ^b	106 ^b 119 ^b 116 ^c	95 ^b 105 ^{ab} 101 ^b	7 5 4	0.031 0.042 0.001
BW, kg Manchega Lacaune Overall	76.8 74.3 76.2	78.8 77.6 78.4	79.1 78.9 78.8	80.7 77.4 78.8	1.2 1.4 1.1	0.133 0.130 0.161

Values are LSM; Within the same row: ^{a, b, c} *P* < 0.05

Results: 2/9

Effect of DCAD on feed intake of dairy ewes at mid-lactation according to breed

Results: 3/9

Effect of DCAD on feed intake per BW^{0.75} of dairy ewes at mid-lactation according to breed

Results: 4/9

Effect of DCAD on milk yield and energy corrected milk (ECM) of dairy ewes at mid-lactation

Item	AN-5	AN-25	CA-45	CA-65	SEM	<i>P</i> =
Milk, L/d Manchega Lacaune Overall	0.43 0.58 ^a 0.53 ^a	0.44 0.76 ^{ac} 0.60 ^a	0.50 0.98 ^b 0.76 ^b	0.47 0.92 ^{bc} 0.71 ^b	0.09 0.09 0.05	0.944 0.023 0.008
ECM, L/d Manchega Lacaune Overall	0.48 0.68 ^x 0.59 ^a	0.52 0.74 ^x 0.64 ^{ab}	0.61 0.98 ^y 0.81 ^b	0.54 0.89 ^{xy} 0.73 ^b	0.09 0.08 0.06	0.660 0.082 0.040

Values are LSM; Within the same row: a, b, c P < 0.05; x, y P < 0.10

Results: 5/9

Effect of DCAD on milk yield of dairy ewes at mid lactation according to breed

Results: 6/9

Effect of DCAD on milk composition of dairy ewes at mid-lactation according to breed

Item	AN-5	AN-25	CA-45	CA-65	SEM	<i>P</i> =
TS, %						
Manchega	20.6 ^a	20.7 ^a	20.9 ^a	19.5 ^b	0.3	0.008
Lacaune	18.1	18.1	17.4	18.1	0.6	0.640
Overall	19.6	19.5	19.2	18.9	0.5	0.355
Milk Fat, %						
Manchega	9.2 ^a	9.0 ^a	9.1 ^a	7.9 ^b	0.3	0.011
Lacaune	7.3	7.4	6.9	7.3	0.3	0.565
Overall	8.4	8.3	8.1	7.7	0.2	0.221
Milk Protein. %	, 0					
Manchega	6.9	7.1	6.7	6.9	0.2	0.832
Lacaune	6.2	6.0	5.6	6.0	0.2	0.115
Overall	6.5	6.6	6.3	6.5	0.1	0.475

Values are LSM; Within the same row: ^{a, b, c} *P* < 0.05

Results: 7/9

Effect of DCAD on blood pH of dairy ewes at mid lactation according to breed.

Results: 8/9

Effect of DCAD on blood HCO₃⁻ of dairy ewes at mid lactation according to breed

Results: 9/9

Effect of DCAD on urinary pH of dairy ewes at mid lactation according to breed.

Conclusions:

- DCAD showed effects on DMI and DMI/kg BW^{0.75} but response was more marked in the high yielding dairy ewes.
- Milk yield and ECM were (or tended to be) affected by DCAD, although the response was not significant in low yielding dairy ewes.
- Milk composition did not vary by DCAD.
- Dramatic differences were observed in most Acid-Base Balance indicators, such as: blood pH, blood HCO₃⁻, Base Excess and Anion Gap, according to DCAD and breed.
- Fixed anions Na⁺ and Cl⁻ contents in blood also increased when using anionic salts in dairy ewes.

Implications:

- High yielding dairy ewes are more sensitive to DCAD, because of their greater DMI and water intake.
- Diets containing DCADs values (including S) in the range of +35 to +45 mEq/100 g DM are recommended for lactating dairy ewes.
- Dairy sheep DCADs should be greater than for dairy cows (+20 to +40 mEq/100 g DM).

Highly anionic (< 20 mEq/100 g DM) and highly cationic (> 50 mEq/100 g DM) diets should be avoided for dairy sheep feeding in practice.

Thanks for your attention...

Special thanks to Ramon Costa and the technical staff of the Experimental Farm of the UAB.

