Salt addition to reduce concentrate intake in young bulls

M. Blanco¹, D. Villalba², I. Casasús³, A. Sanz³, J. Álvarez-Rodríguez³

¹PCTAD, Zaragoza, Spain
 ² ETSEA, Universitat de Lleida, Lleida, Spain
 ³ CITA, Zaragoza, Spain

Organic beef producers seek for additives that restrict intake of ad libitum fed concentrates to achieve 40:60 concentrate:forage ratio (EC Regulation 889/2008) without increasing labour consumption

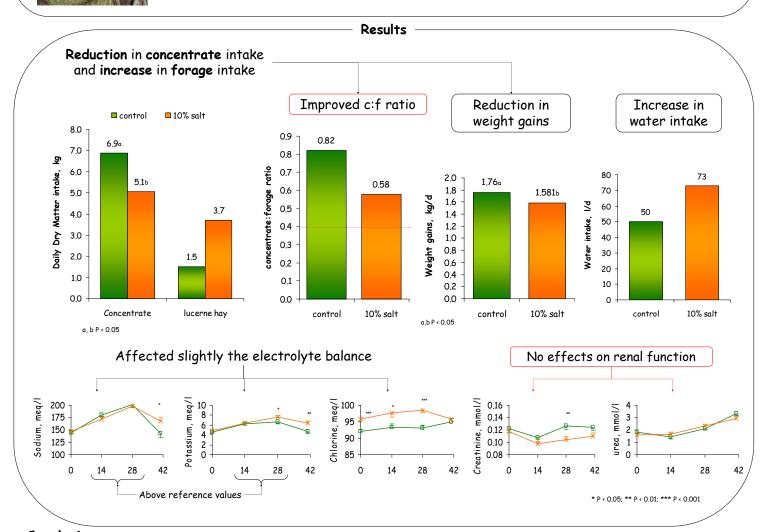
Does 10% salt proportion in the concentrate affect performance, intake and health status?

Material and Methods

Parda de Montaña young bulls (initial weight = 290 kg)

Experimental period: 42 days

Diet: ad libitum lucerne hay + concentrate with different salt (NaCl) content


→0.5% salt: control (n=11)

→ **10% salt** (n=11)

- Weekly weights ⇒ 🛮 weight gains
- Daily Intake:
 - concentrate: per animal
 - lucerne hay: per group
 - water: per group

- Blood samples at 0, 14, 28, 42 d to obtain serum for:
 - Electrolyte balance: sodium, potassium and chlorine
 - Renal function: urea and creatinine

Conclusions

- · Addition of 10% salt reduced concentrate intake and weight gains without impairing the metabolic status
- · Addition of 10% salt improved the c:f ratio but did not reach 40:60, compulsory in EU organic farming

Abstract number: 7509

Salt addition to reduce concentrate intake in young bulls

Blanco, M.³, Villalba, D.², Casasús, I.¹, Sanz, A.¹ and Álvarez-Rodríguez, J.¹, ¹CITA,

Avda. Montañana 930, 50059 Zaragoza, Spain, ²UdL, Av. Rovira Roure 191, 25198

Lleida, Spain, ³PCTAD, Avda. Montañana 930, 50059 Zaragoza, Spain;

icasasus@aragon.es

Organic beef producers seek for fattening diets that comply with the 40:60 concentrate:forage (c:f) ratio imposed by EC Regulation 889/2008 without increasing labour consumption. Adding salt to concentrate may be interesting to reduce its intake provided it does impair animal health. Twenty-two young bulls (290 kg) were assigned to one of two feeding treatments during 42 days (d). Both groups received on ad libitum basis a concentrate (11.8 MJ ME/kg DM, 16.4% CP) that differed in sodium chloride content, 0.35% (Control) and 10% (Supplemented). Animals received lucerne hay (10.2 MJ ME/kg DM, 15.8% CP) and water on ad libitum basis. Concentrate intake and weight were controlled individually and water and hay intake on a group basis. Air temperature was recorded daily. Animals were bled biweekly to study the electrolyte balance (Na, K and Cl concentrations) and renal function (urea and creatinine concentrations). Salt addition reduced weight gains (1.58 vs. 1.76 kg/d for Supplemented and Control animals respectively, P < 0.05) and concentrate intake (5.1 vs. 6.9 kg/d, P < 0.001) while hay (3.7 vs. 1.5 kg/d) and water intake (73 vs. 50 l/d) increased. Concentrate: forage ratio was 58:42 and 82:18 for Supplemented and Control animals, respectively. Blood parameters remained within the normal reference ranges, except for Na and K in both groups on d 14 and 28. Salt addition increased plasma Cl concentration on d 0, 14 and 28, and K concentration on d 28 and 42, and it decreased creatinine at d 28. However, as water was freely available salt poisoning did not occur. Air temperature increased on d 28 above 25°C, causing an increase in plasma Na concentration and, concomitantly, water intake. However, plasma Na concentration was not affected by salt addition. Inclusion of 10% salt in the concentrate reduced its intake without impairing the metabolic homeostasis, and c:f ratio was reduced although the compulsory ratio was not achieved.