

Faculty of Agricultural and Nutritional Sciences

Christian-Albrechts-University, Kiel Institute of Animal Breeding and Husbrandy

Vaccination strategies to control classical swine fever epidemics

Julia Brosig, Imke Traulsen, Joachim Krieter

Institute of Animal Breeding and Husbrandy,

Christian-Albrechts-University

Introduction

- classical swine fever (CSF)
 → highly contagious virus disease
- economic losses
 - movement restrictions on farms in protection and surveillance zones
 - export losses
 - preventive culling
- ethical objections

Control measures

• EU Directive 2001/89/EG

- current control strategy:
 - depopulation of infected herds
 - protection and surveillance zones
 - preventive culling
- since 1988: non-vaccination policy in the EU

Alternative control measures

Emergency vaccination

- permitted since 1990
- emergency vaccination plan
- live attenuated vaccines

- no discrimination between vaccinated and infected pigs
- trade restrictions

Alternative control measures

- Real time RT-PCR
 - direct detection of CSF virus
- avoid culling of healthy animals
- change in CSF policy
 - virus free pig populations are free from risk

Aim of the study

Comparison of emergency vaccination and rapid PCR testing with the current control strategy (preventive culling)

Simulation model

- spatial and temporal Monte-Carlo Simulation
- daily basis
- virus transmission:
 - animal, person and vehicle contact
 - Iocal spread
- control strategies according to EU Directive 2001/89/EG + rapid PCR testing

Simulation model

- Farm data:
 - region in Northern Germany
 - 908 km²
 - 1108 farms (777 finishing farms, 57 farrowing farms, 274 farrow-to-finish farms)
 - 1.2 farms/km²

Control strategy combinations

Basis: control zones (protection and surveillance zone)

- strict transport standstill
- + preventive culling
 - 500 m, 1km around all diagnosed farms
- + emergency vaccination
 - 5 km, 10 km around the first diagnosed farm
 - delay of 10 days until start
 - time until immunity: Ø 4 days

Control strategy combinations

Basis: control zones (protection and surveillance zone)

- + rapid PCR testing
 - 1-5 km around all diagnosed farms
 - 80 farms per day
 - PCR results after 24 h
 - PCR examination interval: 30 days
 - clinical examination interval: 10 days

Mean number of infected and culled farms

Comparison of farms culled preventively and after testing depending on application radius

	farms culled preventively	farms culled after positive PCR result
500m-radius	23.3	16.7
1000m-radius	53.2	21.2
2000m-radius	173.9	22.9
3000m-radius	331.4	22.7

Number of infected farms

	Preventive culling	PCR testing
500m-radius	48.6	50.5
1000m-radius	35.3	36.9
2000m-radius	35.2	36.2
:	:	:
5000m-radius	31.1	32.9

Conclusion and summary

- vaccination radius of 10 km around first diagnosed farm \rightarrow 422 vaccinated farms
- testing radius of 1 km \rightarrow 55 tested farms
 - repetition of PCR and clinical examination
- personnel and material effort
- PCR testing is an alternative from the ethical point of view

Thank you for your attention!

