61st Annual Meeting of the European Association for Animal Production August 23rd-27th, 2010 Heraklion – Crete Island GREECE Session 30 – Free Communications in Animal Nutrition, poster 24- abstract No. 8527 corresponding author: luciano.migliorati@entecra.it

E LA SPERIMENTAZIONE IN AGRICOLTURA

Effect of different levels of crude protein and methionine or methionine + lysine supplementation on performance of dairy COWS

L.Migliorati^{*1}, F. Masoero², M.Speroni¹, F.Abeni¹, D.Giordano¹, M.Cerciello¹, L. Fiorentini², G.Pirlo¹.

¹ CRA-FLC Centro di ricerca per la produzioni foraggere e lattiero casearie – sede distaccata di Cremona, Italy

² Istituto di Scienze degli Alimenti e della Nutrizione, Università Cattolica del Sacro Cuore, Piacenza, Italy

INTRODUCTION

> The efficiency with which the dairy cow utilizes metabolizable protein (MP) for protein synthesis is assumed to indicate how well the essential AA (EAA) profile in MP meets the profile of EAA required by the animal as well as by the total amount of EAA in MP (NRC, 2001).

>Methionine (Met) and lysine (Lys) are the first two limiting aminoacids for lactating dairy cows fed corn-based diets.

>Research has indicated that milk protein content is sensitive to changes in the adequacy of Met in MP (NRC, 2001); therefore, increasing the concentration of Met in MP may lead to increased milk protein production.

>A further benefit of using Met escaping rumen degradation to improve the profile of EAA in MP is that the overall amount of RUP in the diet can be reduced (NRC, 2001).

Reducing the amount of dietary N may result in an overall reduction in the amount of N excreted into the environment.

Aim of two trials was to evaluate the hypothesis that a low crude protein (14% CP) diet supplemented with the isopropyl ester of the 2-hydroxy-4-(methylthio)-butanoic acid (HMBi; MetaSmartTM, Adisseo Inc., Antony, France) (Trial 1) or HMBi + rumen protected _L-Lys HCl (Relys[®], Vetagro S.p.A., Reggio Emilia, Italy) (Trial 2) would support milk production as much as a high CP (16%) diet while reducing N excretion.

GRUUP	DIEI	SUPPLEMENT	Table3-
С	14% CP on dry matter (DM)	none	Experimental
Μ	14% CP on dry matter (DM)	22 g/d/cow of MetaSmart	design in trial 2
ML	14% CP on dry matter (DM)	22 g/d/cow of MetaSmart	
		and 30 g/d/cow of RP Lys (ML)	

Table4-Ingredient and chemical composition of diets fed to cows in trial 2

ingredient	С	Μ	ML	
alfalfa hay (kg/d)	5	5	5	
corn silage	24	24	24	(
protein-mineral mix	11	11	11	
HMBi MetaSmart		22 g/d	22 g/d	1
Relys			50 g/d	
PG (%DM)	14	14	14	
RUP(%CP)	36,56	36,56	36,56	
RDP(%CP)	63,44	63,44	63,44	
NDF(%DM)	35	35	35	Ę
starch(%DM)	25,5	25,5	25,5	
ENI (mCal/kg)	1,64	1,64	1,64	
MP(g/d)	2317	2326,2	2337,7	
MP-Lys%MP	6,7	6,6	7,1	
MP-Met%MP	2,1	2,5	2,4	T
MP-Lys%MP/MP-Met%MP	3.2/1	2.6/1	3/1	

24 Italian Friesian dairy cows $(125\pm56 \text{ DIM})$ were used to compare three diets with the same CP level (14% DM); treatments were: • no supplementation; • 22 g/d of MetaSmart; • 22 g/d of MetaSmart and 30 g/d of RP Lys (Relys^R-Vetagro S.p.A., Reggio Emilia, Italy). The Lys:Met ratio in the diets were respectively: 3.2:1; 2.6:1; 3:1.

trial 1

	GROUP	۵	DIET			SUPPLEMENT	Table1- Experimental	
	LCP 14% CP on dry matter (DM) n					none Experime design in		
	LCPM	14% CP on DM			22	2 g/d/cow of MetaSmart		
	HCP	16.5% CP on D	М		nc	ne		
Table2-Ingredientandchemicalcomposition of diets fed to cows in trial20 Italian Friesian C1CPcompare three diets with CPsupplementation:CP								
	in	gredient	LCP	LCPM	HCP		u mottor (\mathbf{DM})	
	alfalf	a hay (kg/d)	5	5	5	•14% CP on dr without	aminoacids	
	corn silage 24 24 24				24	supplementation (
	protei	n-mineral mix	11	11	11		, ·	
	HMB	i MetaSmart		22 g/d		•14% CP on DM MetaSmart (I CPN		

16,5

39,1

60,8

MetaSmart (LCPM);

•16.5% CP on dry matter without aminoacids supplementation (HCP).

RESUITS

LCP SE LCPN milk yield (kg/d) 27,8 29,8 30,3 1.8 3,3 2,9 0,35 3,3

protein (%)	3,48	3,41	3,38	0,06
lactose (%)	5	5,09	5,08	0.07
fat (g/d)	890	900	890	71
protein (g/d)	940	1000	1030	63
MUN (mg/dl)	23.8 ^a	24.3 ^a	29.5 ^b	1,45
Titratable acidity (°SH/100ml)	7.3 ^b	7.5 ^b	6.7 ^a	0,17
^{a,b} w ithin row ,w ith different supers	cript are	significantl	y different (F	P< 0.05);

fat (%)

Table6- N balance evaluation in trial 1

	LCP	LCPM	HCP	SE		
N intake* (g/d)	456 ^a	470 ^a	519 ^b	16.5		
Milk N *(g/d)	146	156	162	9,9		
faecal N loss *(g/d)	174 ^a	175 ^a	187 ^b	2,8		
urinary N loss *(g/d)	136 ^a	139 ^a	170 ^b	8.3		
total N loss *(g/d)	309	314	357			
total N loss *(kg/year	112	114	130			
N excretion %	N excretion % -15%					
^{a,b} w ithin row ,w ith differe	^{a,b} w ithin row ,w ith different superscript are significantly different (P<0.0					
*Jonker et al.1998						

 Table7- Milk production and composition in trial 2

C M ML SE

Table5- Milk production and composition in trial 1

> In Trial 1, no differences were found between treatments on milk yield, fat, protein, and lactose contents, and milk fat and protein yield, but milk urea N concentration was significantly lower in LPC LPM. Estimated and N excretion was reduced by 15% in LPC in comparison to LPM

			· · · · · ·
starch(%DM)	26,8	26,8	26,4
Enl (mCal/kg)	1,64	1,64	1,67
MP(g/d)	2317	2325,1	2535
MP-Lys (g/d)	154,5	154,5	166,5
MP-Met (g/d)	48,2	56,3	50,2
MP-Lys%MP/MP-Met%MF	3.2/1	2.7/1	3.2/1

14

36,56

63,44

14

36,56

63,44

35,3 35,4 33,6

PG (%DM)

RUP(%CP)

RDP(%CP)

NDF(%DM)

•All diets were chosen in order to fulfil Lys and Met requirements, with a Lys:Met ratios in the diets that were respectively: 3.2:1; 2.7:1; 3.2:1.

• N excretion was estimated according to (Jonker et coll. '98) utilizing milk urea content, milk yield and milk protein content.

•Reduction of diet CP concentration does not cause in the short period a reduction of milk production and composition.

HINHLIS (INS

•Met and Lys supplementation improves milk quality, because of a higher milk protein concentration.

milk yield (kg/d)	30	29,8	30,8	1.02		
fat (%)	3,41	3,29	3,16	0.16		
protein (%)	3.42 ^{cd}	3.32 ^c	3.46 ^d	0.06		
lactose (%)	5,16	5,13	5,15	0.02		
fat (g/d)	1005	1000	940	65		
protein (g/d)	1019	986	1046	44		
MUN (mg/dl)	28.9 ^b	28.9 ^b	25.5 ^a	0.81		
Titratable acidity (°SH/100ml)	6,69	6,51	6,11	0.12		
^{a,b} w ithin row ,w ith different superscript are significantly different (I						
^{c,d} w ithin row ,w ith different supers	cript ten	d to differ (P=0.08)			

Table8- N balance evaluation in trial 2

	С	Μ	ML	SE
N intake (g/d)	512	506	494	11.3
Milk N (g/d)	162	157	166	7,8
faecal N loss (g/d)	184	183	181	1,94
urinary N loss (g/d)	166 ^b	166 ^b	147 ^a	4.7
total N loss (g/d)	350	349	328	
total N loss (kg/year)	128	127	119	
N excretion %			-8%	
^{a,b} w ithin row ,w ith different superscript are significantly different				
*Jonker et al.1998				

In Trial 2, no differences were found about milk yield, fat and lactose contents, and milk fat and protein yield, while protein concentration was higher and milk urea N was lower in LCP+HMBi+Lys than the other two groups. In this Trial, estimate N excretion was 8% reduced by in LCP+HMBi+Lys 111 comparison to LCP and LCP+HMBi.