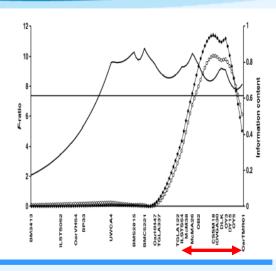


TM-QTL and MyoMAX® effects in Texel x Welsh Mountain lambs


A.Y. Masri¹, N.R. Lambe¹, J.M. Macfarlane¹, S. Brotherstone², W. Haresign³ and L. Bünger¹

¹SAC, Edinburgh, U.K., ²University of Edinburgh, U.K., ³IBERS, University of Wales Aberystwyth, U.K.,

Background (TM-QTL)

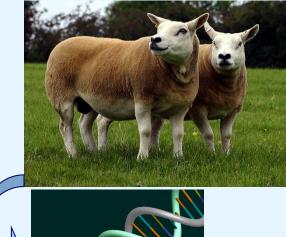
• TM-QTL

- Located on chromosome 18 in UK Texel sheep (Walling et al., 2004)
- Inheriting single copy from the sire
 - Increases ultrasound muscle depth (4-7%) in Texel (Walling et al., 2004)
 - Increases loin muscling (4-7%) in crossbred lambs (Macfarlane et al., 2009)
- Effect expressed only when the allele inherited from the sire and not the dam (Macfarlane et al., 2010)

From Walling et al., 2004. JAS. 82:2234-2245

Background (MyoMAX®)

- Mutations on the myostatin gene (Chr 2):
 - Several such polymorphisms have been found in the myostatin gene in sheep
 - Associated with higher muscle growth
 - Originally microsatellite test → underlying SNP identified (g+6723G-A or c.*1232G > A) (Clop et al., 2006; Hickford et al., 2009)
 - Allelic frequency in British commercial Texel is almost fixed and intermediate (0.3) in Charollais (Hadjipavlou et al., 2008)
 - MyoMAX[®] commercial gene test available from Ovita Ltd



To evaluate MyoMAX[®] effects on carcass traits in crossbred lambs out of Welsh Mountain ewes

To evaluate TM-QTL effects on carcass traits in crossbred lambs out of Welsh Mountain ewes

Materials & Methods (1)

4 Texel sires X 400 Welsh Mountain ewes

Ram 71085 \rightarrow TM-carrier \rightarrow MM/MM and TM/+ Ram 71088 \rightarrow TM-carrier \rightarrow MM/MM and TM/+ Ram 71128 \rightarrow MM-carrier \rightarrow MM/MM and +/+ Ram 71058 \rightarrow MM-carrier \rightarrow MM/+ and +/+

Materials & Methods (2)

Count of Lamb ID	TM-	QTL statu	IS	
MyoMAX [®] status	0	1	9 *	Grand Total
0	12	-	3	15
1	80	19	30	129
2	15	4	9	28
Blank	-	-	3	3
Grand Total	107	23	45	175
* = genotype unkno	own			

6

Materials & Methods (2)

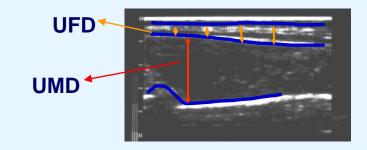
Count of Lamb ID	TM-	QTL statu	IS		
MyoMAX [®] status	0	1	9*	Grand Tota	al
0	12	-	3	15	
1	80	19	30	129	172
2	15	4	9	28	
Blank	-	-	3	3	
Grand Total	107	23	45	175	

7

* = genotype unknown

Materials & Methods (2)

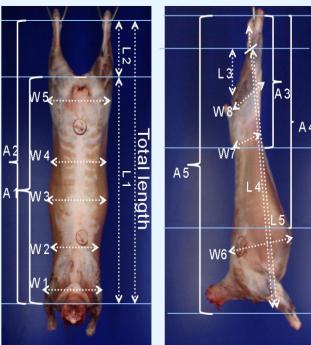
Count of Lamb ID	TM-QTL status		IS	
MyoMAX [®] status	0	1	9*	Grand Total
0	12	-	3	15
1	80	19	30	129
2	15	4	9	28
Blank	-	-	3	3
Grand Total	107	23	45	175
* = genotype unkn	13 0wn	0		

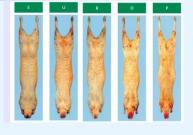

* = genotype unknown

Materials & Methods (3)

Lambs were:

- Weighed at 8 and 23 weeks of age (preslaughter)
- Ultrasonically measured at the 3rd lumbar vertebrae at 23 weeks of age for
 - fat depth (UFD)


- muscle depth (UMD)



Materials & Methods (4)

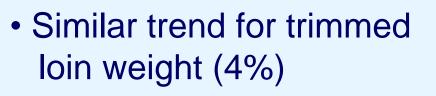
Carcasses were

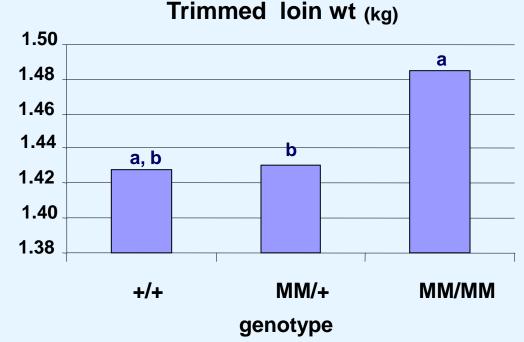
- Weighed and classified for conformation and fatness
- Video Image Analysis (VIA) scanned to predict
 - Saleable meat yield of the primal cuts: leg, chump, loin, breast and shoulder
 - Muscularity traits in the hind leg and the Arwa
 - Widths, lengths and areas (W, L and A, respectively) of carcass regions; and carcass and hind leg compactness



Material & Methods (5)

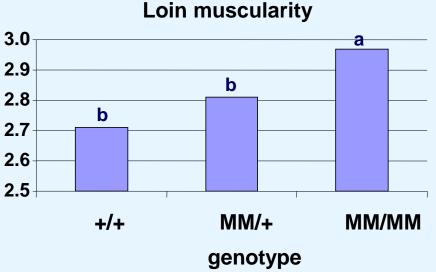
- Statistical analysis (GLM; SAS)
 - Fixed Effects
 - Genotype carrier status^{1;} Litter size (when significant); Sire
 - Weight used as covariate² for ultrasound traits, carcass conformation and fat class and VIA-predicted primal and trimmed primal weights
 - **1= no significant interaction between TM-QTL and MyoMAX was found for any trait**
 - **2= no covariate for weight, or VIA carcass dimensions or compactness traits**

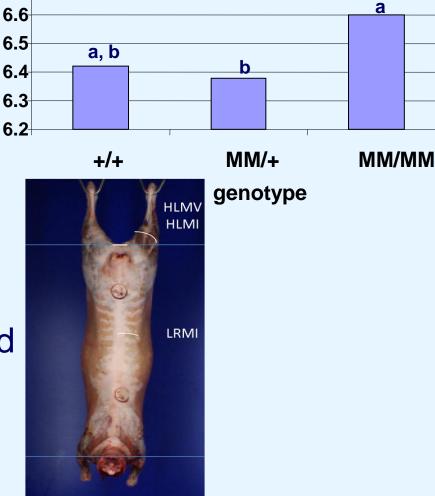

MyoMAX[®] Results (fat measures)



 MyoMAX[®] homozygous lambs had significantly less fatness compared to other genotypic groups

MyoMAX[®] Results (VIA-predicted primal cut ₁₃ weights)


- MyoMAX[®] homozygous carriers were significantly greater than other genotypic groups in:
 - Leg weight (3.3%)
 - Trimmed leg weight (6.1%)
 - Trimmed chump weight (4.6%)


MyoMAX[®] Results (VIA-predicted muscularity traits)

6.7

Hind leg muscularity

- Significant increase in hind leg muscle volume in MyoMAX[®] homozygous carriers compared to other genotypic groups
- Muscularity: volume of muscle per unit of bone length

MyoMAX[®] Results (VIA-predicted carcass measurements)

15

	Муо	MAX [®] st	atus		
Trait	+/+	MM/+	MM/MM	Ϋ́Ύ.	
Carcass compactness ¹	0.240 ^b	0.243 ^b	0.252 ^a	w 5	L3 W 8
Leg Compactness ²	0.212 ^b	0.218 ^b	0.230 ^a	Total	
W1(cm)	19.59 ^{ab}	19.49 ^b	20.18 ^a	Total length	
W3(cm)	21.05 ^{ab}	21.25 ^b	21.80 ª		
W5(cm)	23.17 ^b	23.32 ^b	24.24 ^a		
A1(cm²)	1445 ^{ab}	1453 ^b	1505 ^a	1641	V
A2(cm²)	1636 ^{ab}	1638 ^b	1692 ^a		

1 Carcass compactness = W5/Total_Length

2 Leg compactness = $[W5+W8]^{1/2}$ / L3

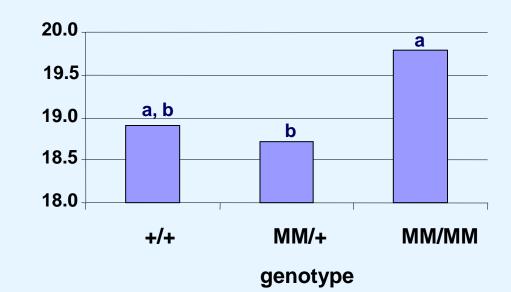
MyoMAX[®] Results (VIA-predicted carcass measurements)

	MyoMAX [®] status			
Trait	+/+	MM/+	MM/MM	
Carcass compactness ¹	0.240 ^b	0.243 ^b	0.252 ^a	
Leg Compactness ²	0.212 ^b	0.218 ^b	0.230 ^a	
W1(cm)	19.59 ^{ab}	19.49 ^b	20.18 ^a	
W3(cm)	21.05 ^{ab}	21.25 ^b	21.80 ª	
W5(cm)	23.17 ^b	23.32 ^b	24.24 ^a	
A1(cm²)	1445 ^{ab}	1453 ^b	1505 ^a	
A2(cm²)	1636 ^{ab}	1638 ^b	1692 ^a	

W 5 W 3 W 1

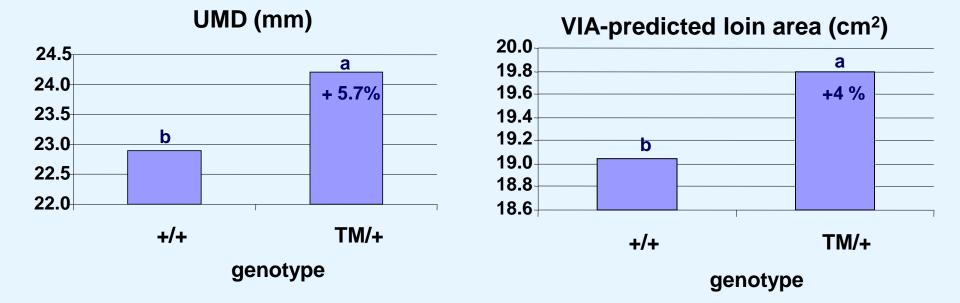
1 Carcass compactness = W5/Total_Length 2 Leg compactness = [W5+W8]^{1/2} / L3

MyoMAX[®] Results (VIA-predicted carcass measurements)


	MyoMAX [®] status			
Trait	+/+	MM/+	MM/MM	
Carcass compactness ¹	0.240 ^b	0.243 ^b	0.252 ^a	
Leg Compactness ²	0.212 ^b	0.218 ^b	0.230 ^a	
W1(cm)	19.59 ^{ab}	19.49 ^b	20.18 ^a	
W3(cm)	21.05 ^{ab}	21.25 ^b	21.80 ^a	
W5(cm)	23.17 ^b	23.32 ^b	24.24 ^a	
A1(cm ²)	1445 ^{ab}	1453 ^b	1505 ^a	
A2(cm ²)	1636 ^{ab}	1638 ^b	1692 ^a	

1 Carcass compactness = W5/Total_Length 2 Leg compactness = [W5+W8]^{1/2} / L3

MyoMAX[®] Results (VIA-predicted loin muscle dimensions)


- MyoMAX[®] homozygous carriers were significantly greater than other genotypic groups in:
 - Loin width (2.5%)
 - Loin depth (4.4%)

Loin area (cm²)

• Similar trend for loin area (4.7%)

TM-QTL Results

- TM-QTL heterozygous carriers were significantly greater than non-carriers in:
 - VIA-predicted loin width (2%)
 - VIA-predicted leg weight (2.2%)

Conclusions

- MyoMAX[®]
 - increased VIA-predicted muscularity and muscling traits in both loin and leg
 - no significant differences in measured muscling traits (UMD & carcass conformation class)
 - decreased fatness
 - sufficient to classify homozygous carriers in lower mean MLC fat class
 - mode of inheritance seems to be 'partially recessive' for muscle traits and additive for fat traits
 - in maternal lines carriers should be selected to get the full benefit

Conclusions

• TM-QTL

- increased loin muscling in Texel x Welsh Mountain crossbred lambs
- increased saleable meat yield in leg
- did not affect VIA predictions of muscularity or carcass shape

Acknowledgements

Acknowledgements

Damascus University, Syrian Arab Republic

Svccess through Knowledge