EAAP2010; Session 26, w.nauta@louisbolk.nl

Effect of Crossbreeding on Milk Production, Udder Health and Fertility on Dutch Organic Dairy Farms

W.J. Nauta[‡], Y. de Haas^{*}, J.N. Hoorneman[#],E.A.A. Smolders^{*}, and R.F. Veerkamp^{*}

* Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, PO Box 65. NL-8200 AB Lelystad

‡ Louis Bolk Instituut. Hoofdweg 24. NL-3972 LA Driebergen# Current address: Hendrix Genetics, PO Box 114. NL-5830 AC Boxmeer

LOUIS BO

Content:

- Introduction
- Material and Methods
 - Available data
 - Analyzed traits
 - Analyzed breeds
 - Statistical analyses
- Results
 - Overall
 - Soil type
 - Barn type
- Conclusion

Introduction:

de natuurlijke kennisbron

Organic dairy farming:

- 312 farms in Netherlands
- 55 milking cows/farm
- Still ~ 65% HF blood
- ~ 6650 kg milk/ha
- ~ 6200 kg milk/cow
- 25% natural mating

Introduction:

Organic dairy farming

- Holsteins, Dutch breeds, foreign breeds and crosses
- Restrictions:
 - No fertilizer, less concentrates and AB
 - Cows on the pasture
- High variation in management
 - More depending on farm environment
 - Less possibilities to steer

Dutch

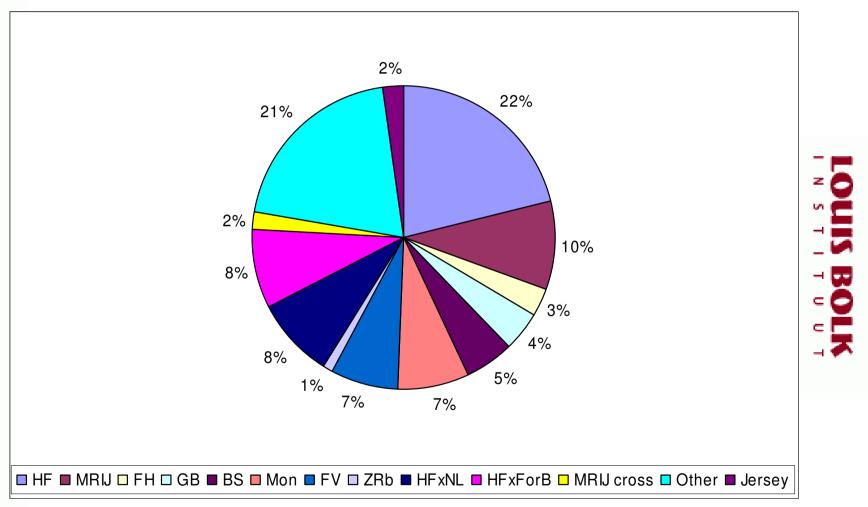
Friesian

Holstein Frisian

Brown Swiss

WAGENINGEN UNIVERSITEIT

WAGENINGEN UR



Blaarkop

<u>۲</u>

Breeds and crosses:

WAGENINGEN UNIVERSITEIT WAGENINGEN UR

Aim:

- The aim of this study was
 - to analyze an unique dataset with 24 different breeds and their crosses
 - to estimate the effects of crossbreeding for milk production, udder health and fertility
 - to investigate if these effects differ according to soil type and housing systems.

Available data:

• 113 Dutch organic farms

- January 1st, 2003 February 1st, 2009
- 33,788 lactations on 15,015 individual cows (average yearly herd size of 50 cows/farm)
- 28% primiparous cows,
 23% 2nd lactation cows,
 49% 3rd or more lactation cows

Analyzed traits:

- Animal data
- Traits
 - Milk production
 - Fat and protein corrected milk yield
 - Fertility
 - Udder health
- Farm data
 - Soil type (sand vs. no sand)
 - Housing (cubicles vs. no cubicles)

Analysed breeds:

• 24 breeds in total

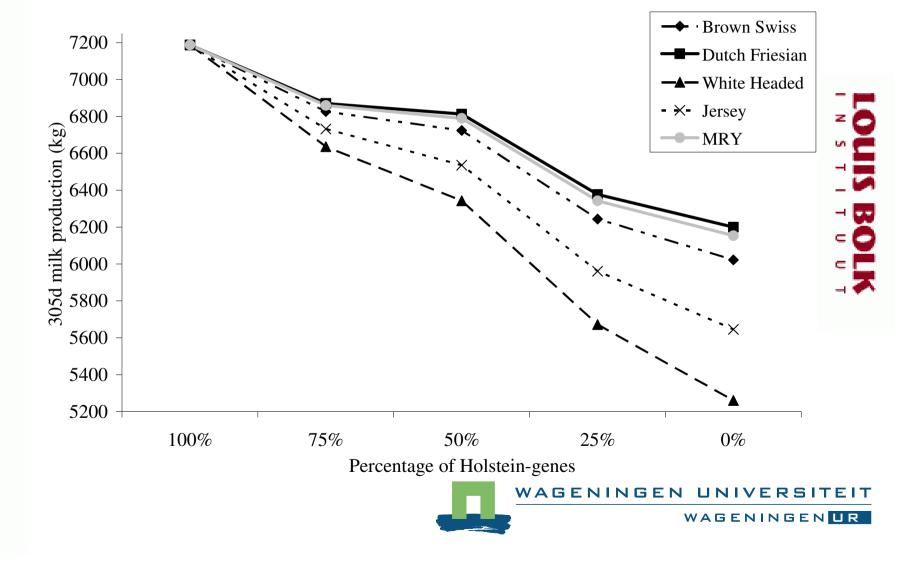
- 6 breeds most presented:
 - Holstein-Friesian (HF),
 - Brown Swiss (BS),
 - Dutch Friesian (DF),
 - Groningen White Headed (GWH),
 - Jersey (J),
 - Meuse-Rhine-Yssel (MRY)

Statistical analyses:

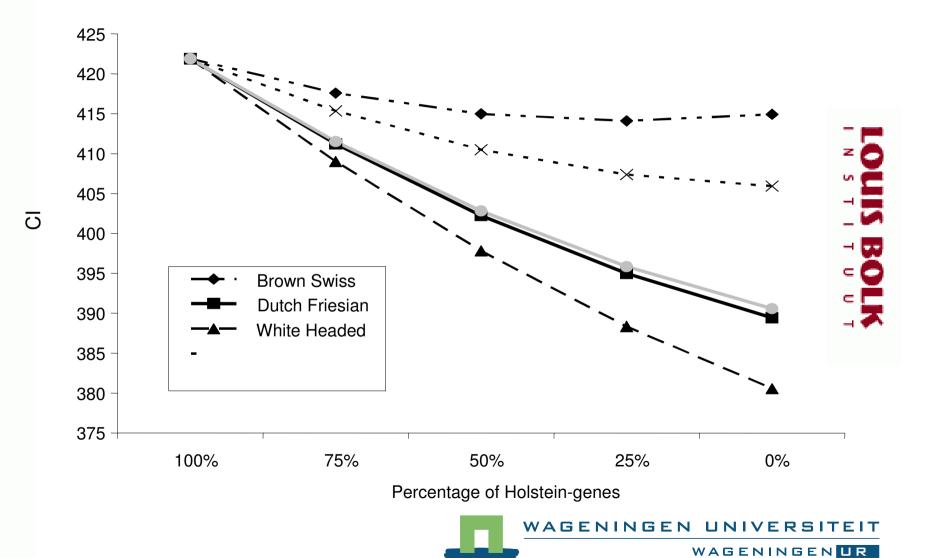
- Regression on all breed fractions, expected heterosis and recombination with ASREML
- Least square means for purebred Holsteins and crosses (F1 and backcross) with 5 other breeds
- $Y = \mu + fixed effects + \Sigma b_i^* breed_i + b_2^* heterosis + b_3^* recombination + animal + error$

Results overall:

- Average milk production traits:
 - 6858 kg in 305 days
 - 300 kg fat and 235 kg protein
- Average functional traits:
 - Calving interval was 411 days
 - The lactation-average SCS was 1730 (~266,000 cells/ml)


Results; regression coefficients:

- Regression coefficients:
 - Heterosis had a favorable effect (p<0.10) on milk, FPCM and CI, but unfavorable for SCS
 - Recombination was unfavorable for the milk traits, but favorable for the functional traits
 - Regression coefficients differed per breed



Predicted milk production per % of HF genes :

Predicted calving interval per % of HF genes

Results regression soil type:

	Milk		FPCM		SCS		CI		
	Sand	No S	Sand	No S	Sand	No S	Sand	No S	
Heterosis	104.9	123.9	124.5	134.3	4.5	3.6	-2.2	-3.1	- 📖
Recombination	-526.6	-516.5	-312.7	-420.2	-41.9 [*]	-8.9	-3.7	-3.7	≈ `0
									۳ 🗖 ۲
Brown Swiss	-6.2 [*]	-75.0	-7.2 [*]	-50.7	-5.2	-4.0	3.2	2.6	
Dutch Friesian	-28.3	-25.2	-14.8	-39.3	-1.2	-1.0	-2.0	1.6	- 55
White Headed	-113.9	-161.8	-137.4	-160.7	12.1 [*]	4.0	-2.0	-1.4	٥Ö
Holstein	114.7[*]	79.3	46.5[*]	74.0	1.0	1.2	3.7	3.7	< 🗖
Jersey	-62.3 [*]	-135.7	-14.3	-59.2	4.1	4.3	2.9 [*]	-0.4	- 🔨
MRY	-7.0[*]	-66.6	-20.4 [*]	-59.5	1.8	1.0	0.3	-0.9	

* P-value < 0.10

Results regression barn type:

	Milk		FPCM		SCS		CI		
	Cub	No C	Cub	No C	Cub	No C	Cub	No C	
Heterosis	69.0	183.5	121.5	199.7	1.9	13.7	-1.7	-5.3	- 🗖
Recombination	-583.9	-365.5	-434.9	-267.7	-19.7	-35.6	-8.5	7.6	_20
									Ĩ
Brown Swiss	-43.7	-88.7	-17.7 [*]	78.6	-5.5	2.2	3.4	0.7	_ 🗖
Dutch Friesian	1.6	-120.1	-5.3	-105.5	-3.5 [*]	6.9	0.4	-2.2	- B
White Headed	-155.5 [*]	-142.9	-162.9	-139.8	6.1 [*]	3.9	-1.6	-1.9	- 9
Holstein	107.0 [*]	54.1	97.0 [*]	49.9	0.5	3.0	4.5 [*]	1.4	
Jersey	-83.6	-149.2	-20.1	-86.5	1.6[*]	8.2	1.4	1.2	-
MRY	-21.5 [*]	-86.7	-24.3 [*]	-90.5	1.3	0.7	0.5	-2.4	

* P-value < 0.10

Conclusions:

- Breeds: large differences between breeds
- Crossbreeding HF with other breeds:
 - Decreases milk production and FPCM
 - Improves fertility
 - Improves udder health in certain crosses
- Soil type and housing affected regression coefficients on breed components
- → It is mportant to choose the right breed or cross breed for the divers organic farm systems

Thanks for your attention, Any questions? Contact: w.nauta@louisbolk.nl yvette.dehaas@wur.nl

