

Modelling aspects of association studies for quantitative traits in livestock

Geoff Pollott

Motivation

- Association analyses common method for dissecting complex traits in humans
- SNP markers in livestock allow use of association analyses of production traits
- Data and DNA available from an extensively recorded group of dairy herds in South-East England
- Scaling up from few SNPs to genome-wide SNPs

What are appropriate methods and models to use on these data? What can we learn from human association studies?

- Population structure a confounding factor
- Cryptic relatedness
- Correction for multiple testing
- Models used very simple compared to those traditionally used in analysis of livestock data

Binary traits

- Common for disease traits
- Chi-squared approach e.g. PLINK
- > 2 x 2 (allele) or 3 x 2 (genotype) table analysed
- Mixed model used if 'fixed' effects thought to affect incidence of condition e.g. ASRemI
- Example: Calf mortality found to be affected by candidate SNPs in the leptin gene (Brickell *et al.*; JDS, 2010)

Quantitative traits

- > Models in 'human' packages too simple
- Mixed model methodology applicable using packages like ASRemI – animal model + SNP effect
- Results for early growth, IGF-1 and fertility in heifers reported by Clempson *et al.* (2010a and b) at BSAS and WCGALP for candidate SNP in Leptin and mitochondrial genes

Is mixed-model approach (e.g. with ASReml) suitable for genome-wide association studies (GWAS)?

Issues with GWAS of QT

Appropriate computing strategy

➤ 1) ASRemI in R or other appropriate programming framework - restart from previous SNP solution

> 2) Three-step approach

Step 1 – fit full model without the SNP effect and save residuals

Step 2 – fit SNP effect to residuals one at a time

➢ GRAMMAR (Aulchenko et al, 2007) (ASRemI plus PLINK another option)

Step 3 – reanalyse significant SNP with full model in ASRemI

Use of 7-SNP windows to find true SNP

Using heifer daily milk production (kg) as an example with the A59V leptin SNP

	SNP	Genotype effect		
	effect P value	CC	СТ	TT
Mixed model in ASRemI	0.035	26.3 ^a	26.2 ^a	23.0 ^b
Analysis of residuals	0.041	22.1 ^a	21.8 ^a	18.2 ^b
Inclusion of more recorded heifers without SNP data*	0.021	22.2 ^a	21.6 ^b	18.0 ^c

* 5 more SNPs (out of 40) became significant with this method

Substitution effect or genotype effect SNP model using SNP A59V

	SNP	Genotype effect		
	effect P value	CC	СТ	TT
Milk/d (kg)	0.035	26.3 ^a	26.2 ^a	23.0 ^b
Crown rump length - 15mo (cm)	0.034	171.5 ^a	174.0 ^b	169.6 ^c

Multiple testing correction

- Bonferroni correction too conservative Type 1 errors
- Genome-wide and chromosome wide P values
- ➢ Q value and FDR approach
- Permutation testing

Unresolved issue

Testing interactions

- Mixed model or analysis of residuals approach allows for testing SNP x SNP interactions
- Fit model with 2 SNPs plus interaction
- Significant interaction indicates possibility of epistasis

An example interaction – height at 220d (cm)

	Main	Genotype SNP A		
	effect	AA	Aa	aa
Main effect		107.0 ^a	107.3 ^a	108.1 ^b
Genotype SNP B - BB	107.8 ^a	106.6	107.0	107.9
Bb	107.6 ^a	107.2	107.7	105.7
bb	108.1 ^b	107.2	106.3	110.0

Conclusions

- > Models and computing platforms for GWAS available
- Correction for multiple testing an issue
- Testing for epistasis tedious but potentially interesting

Acknowledgements

Prof. Claire Wathes Nicola Bourne Jessica Brickell Andrew Clempson

Thank you for your attention

