

EAAP 2010 61st Annual Meeting of the European Association for Animal Production

AUGUST 23rd-27th, 2010 - HERAKLION, CRETE ISLAND, GREECE

Associative effects of different feed combinations assessed using a Gas Production system

<u>Franco Tagliapietra</u>, Matteo Guadagnin, Mirko Cattani, Stefano Schiavon, Lucia Bailoni

Department of Animal Science University of Padova, Italy

University of Padova

Introduction

Associative effects of feed:

When two or more feeds of different digestibility coefficients are fed in a mixture, the digestibility of the whole mixture is usually different from the mean digestibility coefficient of the feeds in the mixture (Kitessa et al. 1999);

Associative effects may be negative or positive ; (Weiss 1994; McDonald et al. 1995)

Associative effects depend on the kind of feeds and their incorporation ratio (grain/forage)

(Opatpatanakit et al., 1995)

Few information about the effects of by-products.

Gas production allows to follow the kinetics of fermentation in a rapid and cheap way

Objectives

- To evaluate the *in vitro* kinetics of rumen fermentation of by-products and roughages;
- To study the associative effects of different feed combinations and changes over the incubation time.

Material and methods

Equipment: Ankom^{RF} Gas Production System

- ▶ 36 bottles, capacity of 280 ml
- equipped with pressure detectors;
- Wireless transmission of data (1 min frequency)

Feeds

- Citrus pulp
- Apple pomace
- Tomato peels
- Roughages
- Silybum marianum
- Chrysanthemum coronarium

Experimental design

Inoculum preparation

Rumen fluid was:

- collected:
 - 2 h after morning feeding;
 - with oesophageal probe;
 - from 3 dry cow fed hay ad libitum;
- poured in preheated thermos (39°C)
- immediately transferred to the laboratory;
- filtered with 3 layers of cheesecloth;
- analysed for pH (discarded if higher than 6.8);
- used not later than 30 min from rumen collection.

Incubation procedure

Each bottle was filled with:

- ➤ 0.500 ±0.001 g of feed
- ➢ 25 ml of filtered rumen fluid

- > 50 ml di medium (Menke and Staingass, 1988);
- Preparation was performed under a flow of CO₂;
- The bottles were placed in an incubator for 120 h at 39 ±0.5 °C;
- The gas pressure was recorded continuously;
- Gas accumulated in bottle headspace was released when pressure reached 3.4 kPa.

Computation and fitting of GP kinetics

The cumulated values of pressure were converted in volume terms using the universal gas law as described by Lopez (1999).

Time, h

Statistical analysis

- The expected GP of each feed combination was computed as mean of GP obtained from single feeds (assuming absence of associative effects);
- Differences between measured and expected GP were computed for each feed combination;
- The differences of the 6 mixtures were submitted to ANOVA, within incubation times (6, 12, 24, 48 h), to test if they differ from zero

Chemical composition of feeds

Food	DM	Ash	СР	EE	NDF	ADF	ADL		
геец	% DM								
By-products									
Citrus pulp	21.1	2.6	5.7	0.6	25.7	11.7	0.0		
Apple pomace	15.9	2.1	2.3	1.0	23.7	9.5	1.6		
Tomato peels	7.3	11.8	12.1	1.7	33.1	30.0	9.8		
Roughages									
Silybum marianum	88.1	13.0	4.3	0.6	68.8	52.4	8.6		
Chrysantenum coronarium	90.6	5.6	2.3	0.6	79.0	58.1	10.2		

Kinetics of GP of single feeds

Kinetics of combination *Silybum m.* - Citrus pulp

Kinetics of combination Silybum m. - Apple pomace

** P<0.01; * P<0.05

Kinetics of combination Silybum m. - Tomato peels

Time, h

Kinetics of conbination Chrysanthemum c. - Citrus pulp

Kinetics of combination Chrysanthemum c. - Apple pomace

** P<0.01; * P<0.05

Kinetics of combination Chrysanthemum c. - Tomato peels

* P<0.05

Differences between measured and expected GP values

	(as Product	GP parameters:			
	6h,	12h,	24h,	48h,	А,	T½,
	ml	ml	ml	ml	ml	h
- SM+CP	+5	+7* +1	2% +7°	+4	+2	-1.4° -10%
- SM+AP	+10** +40	% +10* +1	3% +6	+4	+4	-2.0* -40%
- SM+TP	+2	+2	+1	+1	+0	-0.4
- CC+CP	+5	+7* +1 2	2% +7°	+4	+1	-1.7* -15%
- CC+AP	+7* +26 °	<mark>∕</mark> ⁄₀ +7° +1 2	2% +4	+2	+3	-1.4° -26%
- CC+TP	+2	+3	+2	+1	+0	-1.0
SEM	3	4	4	4	3	0.7

** P<0.01 * P<0.05 ° P<0.10

Conclusions

- The combination of feeds with different fermentability evidenced positive associative effects, the size of these effects was substrate dependent;
- Generally, the associative effect appeared up to the first 12 h of incubation thereafter it slowly decreased till to disappear;
- This suggests that the association of by-products with roughages increased the rate of feed fermentation but did not changed the potential degradability of feed;
- Conventional methods that evaluate in vitro feed degradability at 48 h (T&T, 1963; van Soest, 1966) do not detect these effects.

Thank you for your attection

