WHEAT IS NOT A STANDARD RAW MATERIAL

Ángela Gutiérrez del Álamo Oms, Pérez de Ayala, den Hartog, Verstegen and Villamide. Nutreco Poultry and Rabbit Research Centre Toledo, Spain

DEFINING WHEAT

Graphic 1 and 2. Different components of the wheat grain (%) (graphic 1) and Chemical composition of the wheat grain (10 % moisture) (graphic 2)

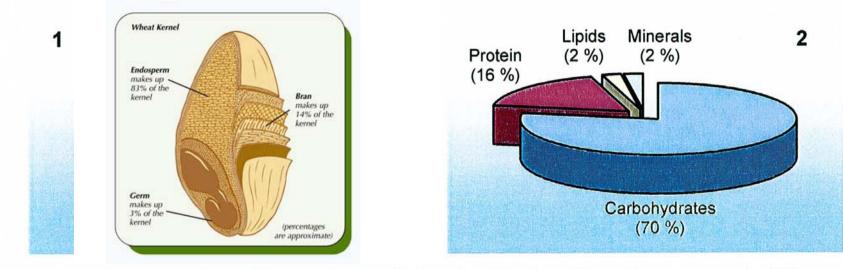


Table 1. Concentration of the nutrients of the wheat in the different components (%).

	Starch	Crude Protein	Crude Fibre	Lipids	Minerals
Bran	_	20	93	30	67
(including aleurone)		20	00	00	0,
Endosperm	100	72	4	50	23
Germ	-	8	3	20	10

Gutiérrez del Álamo, 2007

WHEAT

• Wheat is unique raw material

WHEAT CLASSES

Hard Red Spring wheat

Durum wheat

Hard Red Winter wheat

Soft White Winter wheat

Mixed wheat

Soft Red Winter wheat

WHEAT SHAPES

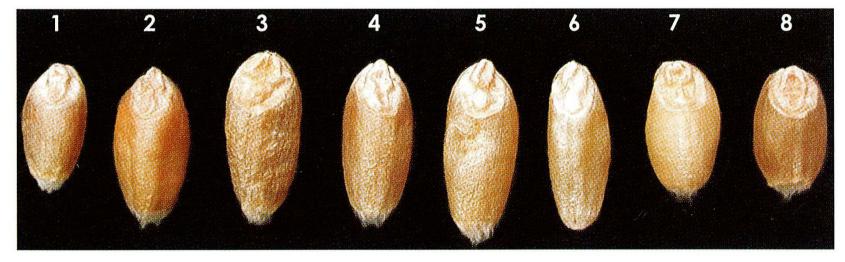
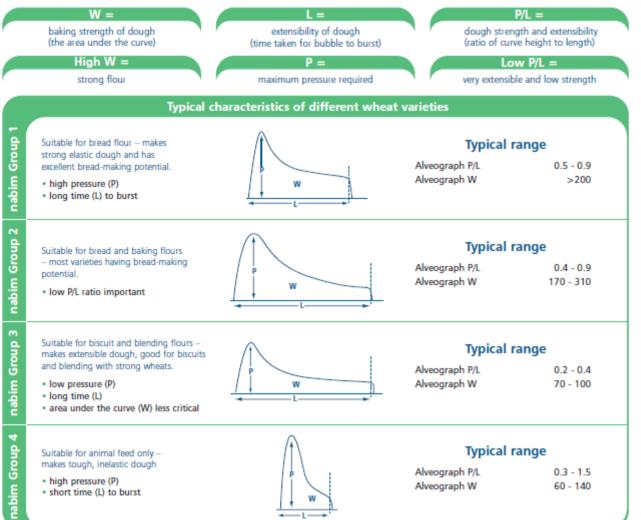


Fig. 4.5. Kernel visual distinguishability of Canada Western wheat classes.


WHEAT QUALITY (FOOD)

- Wheat grade characteristics (test weight, damaged kernels, foreign material, shrunken/broken kernels)
- Wheat non-grade data (dockage, moisture, protein, kernel hardness, kernel hardness, kernel weight, kernel diameter)
- Milling quality characteristics (flour yield, falling number, wet gluten, gluten index)
- Flour properties (protein, ash content, moisture)
- Dough properties determined via alveograph testing (tenacity, extensibility, strength, configuration ratio)
- Baking evaluation (internal characteristics, loaf volume)
 finutreco

CHOPIN ALVEOGRAPH

How does the Chopin Alveograph work?

What the graph means

Five stages of the Alveograph test take place over three days

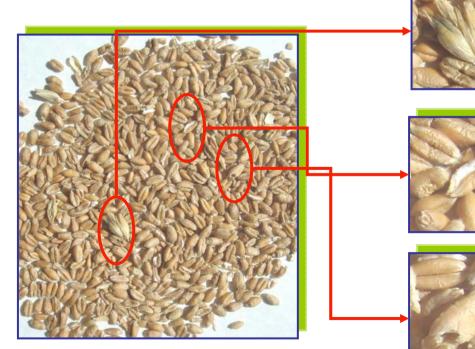
Stage 1 Wheat conditioned to standard moisture

Stage 2 Wheat milled and left to rest

Stage 3 & 4 Dough produced and formed into a disc

Stage 5 Air is pumped into dough to test resistance and elasticity

Chopin Alveograph showing stage 5 - air being pumped into dough


British Cereal Exports is the Export Promotion Department of the Home Grown Cereals Authority

WHEAT QUALITY DEFINITION

"IT MUST BE CLEAN AND BRIGHT WITH NO BAD SMELL, INJURIOUS WEEDSEEDS AND ERGOTS MUST BE AT LOW LEVEL AND IT MUST NOT BE DISCOLOURED. THE DENSITY OF THE BULK GRAINS (SPECIFIC OR BUSHEL WEIGHT) MUST BE AT LEAST 720 kg/m³"

COARSE GRAIN EXPORTS

<u>Agriculture Statistics</u> > Grains > Coarse grain exports (most recent) by country

VIEW DA	ATA: Totals P	er capita	Definition Source C Printable version
			Bar Graph <u>Pie Chart</u> <u>Map</u>
Showing	latest available data	ł.	
Rank	Countries	Amount 🔻	
#1	United States:	51,455 thousand metric tons	
#2	Argentina:	12,215 thousand metric tons	
#3	China:	8,525 thousand metric tons	
#4	Australia:	4,250 thousand metric tons	
#5	Canada:	3,925 thousand metric tons	
#6	Ukraine:	2,835 thousand metric tons	
#7	Russia:	2,400 thousand metric tons	
# 8	South Africa:	1,025 thousand metric tons	
	Total:	86,630 thousand metric tons	
	Weighted average:	10,828.8 thousand metric tons	

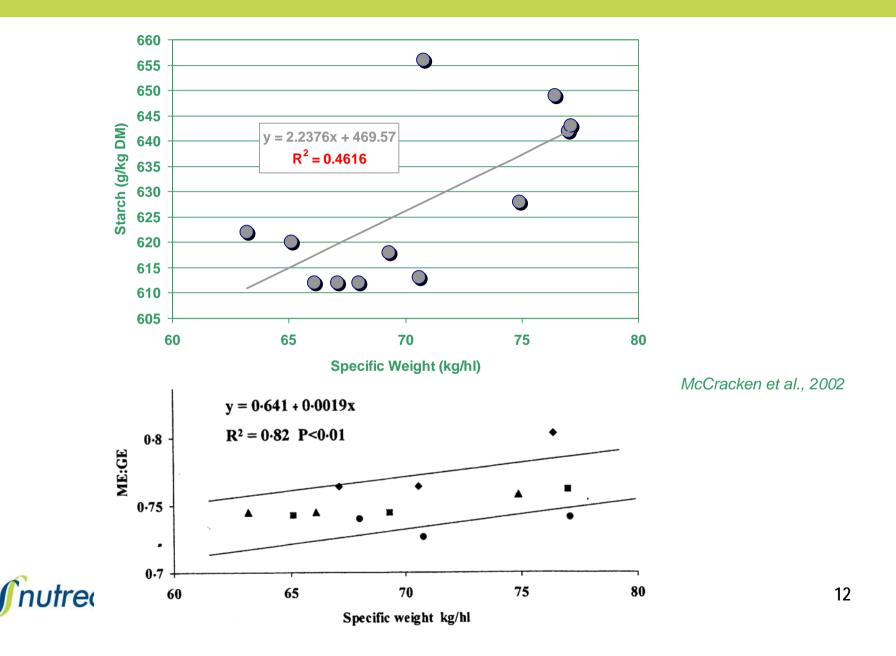
WHEAT IN BROILER NUTRITION

"So, cereals will be expensive and some experts believe they will be actually VERY expensive. There is nothing really to replace cereals, as any potential candidates have already been priced accordingly (one of the perils of globalization!) In other words, we must learn to survive and even turn a profit even with high cereal prices. This might be the time to actually start saving on feed cost for many poultry producers."

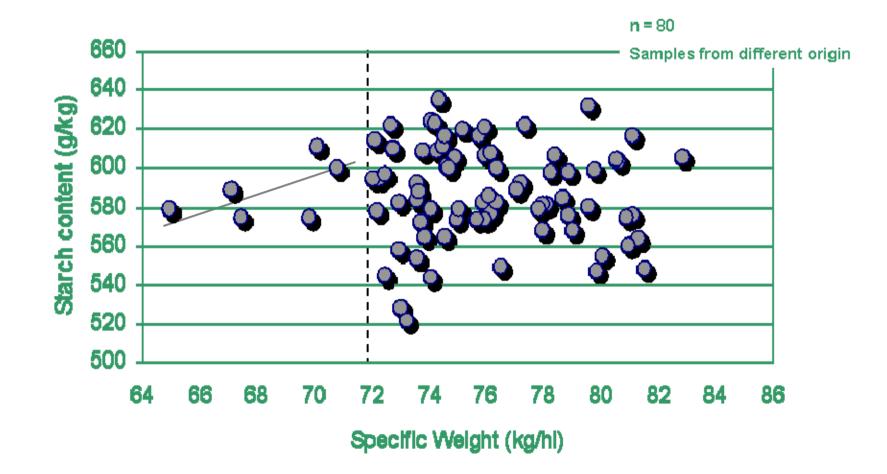
> Ioannis Mavromichalis World Poultry News August, 2010

TODAY POINTS TO DISCUSS

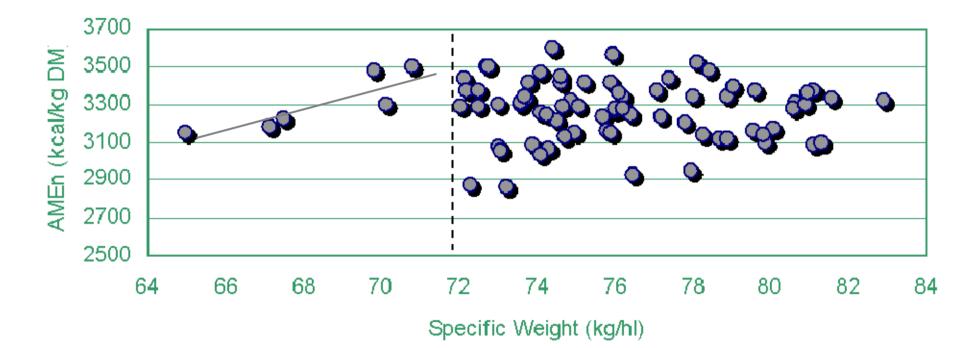
- Towards the definition of wheat quality
 - Specific weight
- The use of enzymes in wheat based diets
- Estimation of AMEn of wheat and its use in broiler nutrition
 - Tables
 - Equations
 - Near-Infrared Spectroscopy (NIRS)



WHEAT QUALITY DEFINITION


"IT MUST BE CLEAN AND BRIGHT WITH NO BAD SMELL, INJURIOUS WEEDSEEDS AND ERGOTS MUST BE AT LOW LEVEL AND IT MUST NOT BE DISCOLOURED. THE DENSITY OF THE BULK GRAINS (SPECIFIC OR BUSHEL WEIGHT) MUST BE AT LEAST 720 kg/m³"

RELATIONSHIP STARCH-AMEN AND SW


CURRENT RELATIONSHIP STARCH AND SPECIFIC WEIGHT

CURRENT RELATIONSHIP SPECIFIC WEIGHT AND AMEn

n = 80 Samples from different origin

RELATIONSHIP SW AND BROILER "ANSWER"

Paerson correlations	n = 80 Samples from different origin
ITEM	r
AMEn	0.070
Ileal digestibility Dry Matter	0.202
lleal digestibility Starch	0.228
lleal digestibility Crude Protein	0.209
Excreta digestibility Dry Matter	0.012
Excreta digestibility Crude Protein	0.087
Retained Crude Protein	-0.055

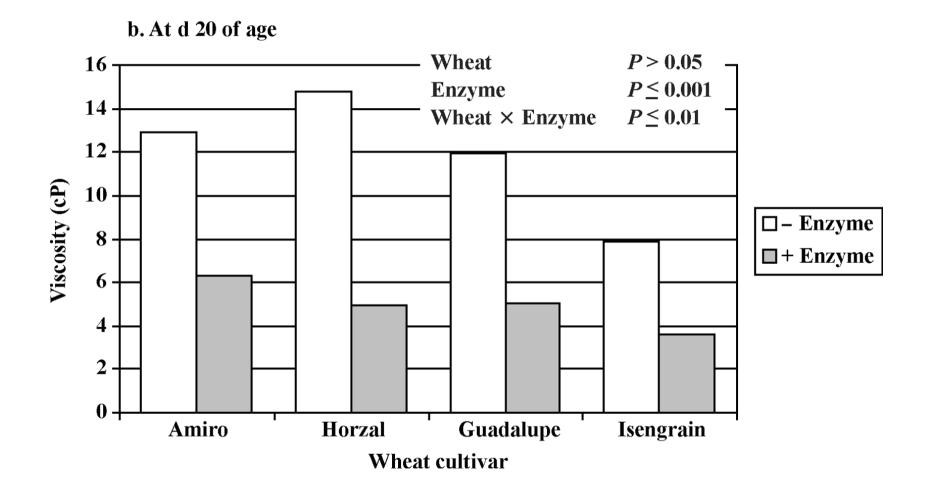
THE USE OF ENZYMES

Arabinoxylan structure and AME of wheat

 Table I
 The apparent metabolisable energy (AME) for broiler chicks and the total non-starch polysaccharide (NSP) content of samples of feed wheat. NSP was estimated by summing values for the individual monosaccharides measured after starch extraction and hydrolysis of the starch-free residue

Sample	AME (MJ/kg DM)	Ara (g/kg)	Xyl (g/kg)	Man (g/kg)	Gal (g/kg)	Glc (g/kg)	UA (g/kg)	β-Glu (g/kg)	Total NSP (g/kg)
A	8.43	16.9	29.0	2.6	4.09	31.7	3.8	5.9	88.1
		(0.7)	$(0 \cdot 4)$	(0.1)	(<0.1)	(0.7)	(0.1)	(0.5)	(1.3)
B	8.43	24.0	48.1	2.3	4.8	34.4	4.1	6.7	117.5
		(0.7)	(1.0)	(0.1)	(1.5)	(0.8)	(0.5)	(0.1)	(3.8)
С	9.29	26.3	47.4	1.8	3.5	40.1	4.0	6.7	123.1
		(0.1)	(0.7)	(0.1)	$(0\cdot 1)$	(3-1)	(0.4)	(0.1)	(2.8)
D	9.43	18.4	25.9	2.0	3.7	32.0	3.8	5.8	85.5
		(0.4)	(4.3)	(<0.1)	(0.1)	(0.9)	(0.1)	(0.2)	(3.5)
E	9.89	12.4	26.9	1.7	3.5	39.3	4.4	6.2	88.0
		(1.3)	$(2 \cdot 0)$	$(0 \cdot 2)$	(0.2)	(1.9)	(0.1)	(0.2)	(3.1)
F	10.95	24.9	45.1	1.9	4.1	37.3	3.6	7.1	117.0
		$(2 \cdot 4)$	(4.2)	(0.2)	(0.3)	(2.5)	(0.5)	(0.2)	(9-7)
G	11.22	12.7	24.1	2.0	3.1	36.9	3.8	6.0	82.6
		(0.9)	(1.9)	(0.2)	(0.3)	(3.0)	(0.2)	(0.2)	(5.7)
H	11.41	27.1	53.9	2.0	3.3	39.0	4.0	7.2	129.2
		(3-1)	$(4 \cdot 4)$	(0.3)	(0.7)	(3.8)	(0.3)	(0.0)	(12.1)
I	12.00	18.8	33.6	2.2	3.9	36.2	3.9	5.8	98.6
		(1.0)	$(2 \cdot 0)$	(0.1)	$(0\cdot 1)$	(2.7)	(0.1)	$(0\cdot 1)$	(5.6)
J	12.63	17.4	28.4	2.1	3.3	33.0	3.5	5.6	87.6
_		(1.0)	(1.7)	(<0.1)	$(0\cdot 1)$	(1.7)	(0.2)	(0.3)	(3.2)
K	13.67	23.0	43.5	2.4	3.7	34.7	3.6	6.5	110.8
		(0.7)	(1.4)	(0.1)	(0.4)	$(1 \cdot 1)$	(0.1)	(0.1)	(3.4)
L	13.74	26.5	47.7	2.2	4.1	39.1	4.1	7.2	123.5
		(0.3)	(0.9)	(<0.1)	$(0\cdot 2)$	$(1 \cdot 4)$	$(0\cdot 1)$	(0.4)	$(2 \cdot 2)$

Ara = arabinose, Xyl = xylose, Man = mannose, Gal = galactose, Glc = glucose, UA = uronic acids, β -Glu = (1 \rightarrow 3, 1 \rightarrow 4)- β -glucan (all values quoted as anhydrous sugars). Standard deviations shown in parentheses.



Austin et al., 1999

79

16

THE USE OF ENZYMES

THE USE OF ENZYMES

Table 4. Effect of wheat cultivar and enzyme¹ addition² on excreta digestibility and AME_n of broilers (mean values)

				Ef	fect ³			
			ter period 13 d of age)			Grow (24 to 2	ver period 27 d of age)	
Item	DM (%)	Starch (%)	CP retention (%)	AME ⁴ (kcal/kg of DM)	DM (%)	Starch (%)	CP retention (%)	AME ⁴ (kcal/kg of DM)
Isengrain								
- +	70.76 70.90	99.26 99.33	62.41 60.28	2,998 3,021	72.23 ^{ab} 72.63 ^a	98.46 99.25	61.10 59.48	3,066 ^{ab} 3,077 ^{ab}
Amiro				-				
- +	70.24 71.76	99.13 99.53	60.52 61.19	2,982 3,058	69.81 ^{bcd} 70.80 ^{abc}	97.61 98.51	58.42 58.99	3,005 ^{bc} 2,996 ^{bcd}
Guadalupe								
-	68.60	99.29	60.40	2,886	69.70 ^{bcd}	98.97	57.76	2,961 ^{cd}
+	68.87	99.40	60.42	2,868	68.29 ^{cd}	98.49	58.01	2,902 ^d
Horzal	68.55	98.51	56.32	2,936	67.34 ^d	97.94	54.09	2,913 ^{cd}
+	70.39	99.40	58.18	3,014	71.68 ^{ab}	97.94	57.26	2,913 3,108ª
Pooled SEM	0.60	0.23	0.86	26.61	0.84	0.45	1.28	32.56
Main effect mean ⁵ Wheat cultivar	0.00	0.20	0.00			0.12		
Isengrain	70.83 ^{ab}	99.29	61.29 ^a	3,010ª	72.44ª	98.88	60.24 ^a	3,071ª
Amiro	71.04 ^a	99.34	60.83ª	3,022ª	70.33 ^b	98.08	58.72ª	3,000 ^b
Guadalupe	68.76 [°]	99.35	60.41 ^a	2,876 ^b	68.98 ^b	98.72	57.89 ^{ab}	2,930°
Horzal	69.63 ^{bc}	99.03	57.41 ^b	2,982ª	69.62 ^b	98.48	55.75 ^b	3,015 ^{ab}
Enzyme	10.11	00.07	50.00	2.054	(0.70	00.04	57.00	0.005
-	69.64	99.06	59.99	2,954	69.78	98.26	57.82	2,985
+ Source of variation	70.45	99.41	60.09	2,989	70.45	98.81	58.42	3,021
Wheat cultivar	< 0.001	0.334	< 0.001	< 0.001	< 0.001	0.330	0.005	< 0.001
Enzyme addition	0.034	0.033	0.865	0.039	0.079	0.088	0.521	0.138
Wheat cultivar × enzyme addition	0.397	0.303	0.136	0.241	0.008	0.319	0.316	0.001

^{a-d}Means within a given column with no common superscript are different (P < 0.05).

¹Avizyme 1300 (Danisco Animal Nutrition, Marlborough, UK).

Gutiérrez del Álamo et al., 2008

²0 (-) or 1 kg/t of feed (+).

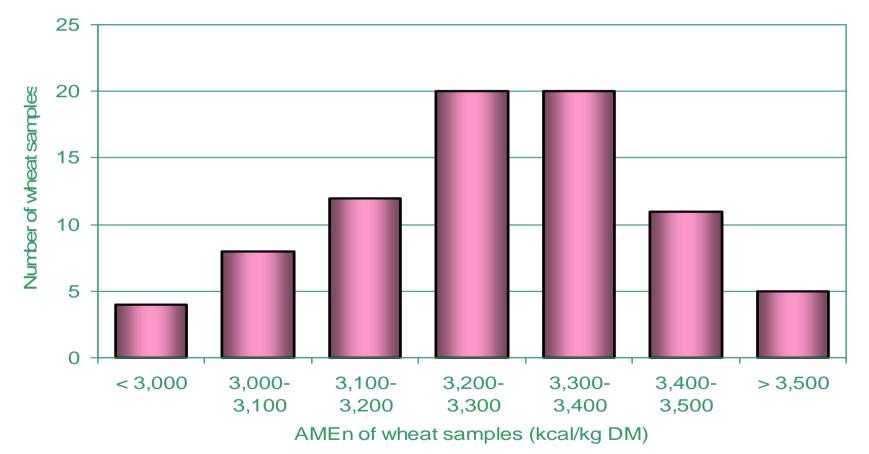
³Each mean represents 10 cages with 1 animal each.

 ${}^{4}AME_{n} = AME$ of the diets corrected by zero N retention.

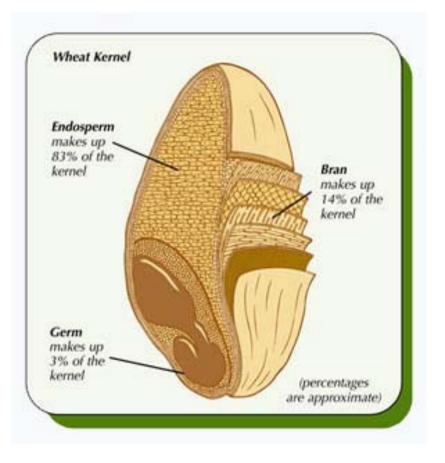
⁵Each mean represents 20 and 40 cages with 1 animal each for wheat cultivar and enzyme addition, respectively.

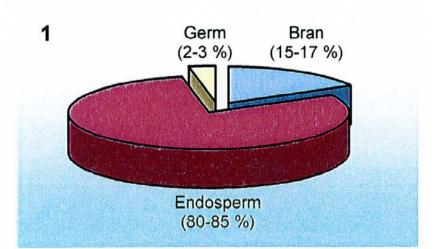
WHEAT IN FEEDING TABLES

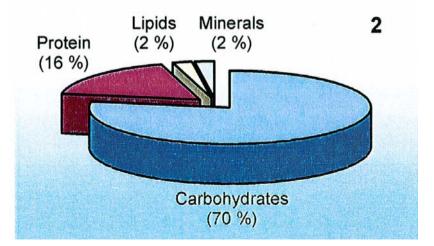
	Dry Crude matter protein			Star	ch	AMEn (kcal/kg)		
	Mean	SD	Mean	SD	Mean	SD	Mean	SD
CVB-2007	86.8	1.5	11.1	1.0	58.7	1.9	2868	-
INRA-2002	86.8	1.1	10.5	0.9	60.5	1.9	2880	-
FEDNA-2002	88.6	-	11.2	-	59.0	-	3150	-
Rostagno- 2005	87.7	-	11.5	-	54.9	-	3046	-


WHEAT IN FEEDING TABLES

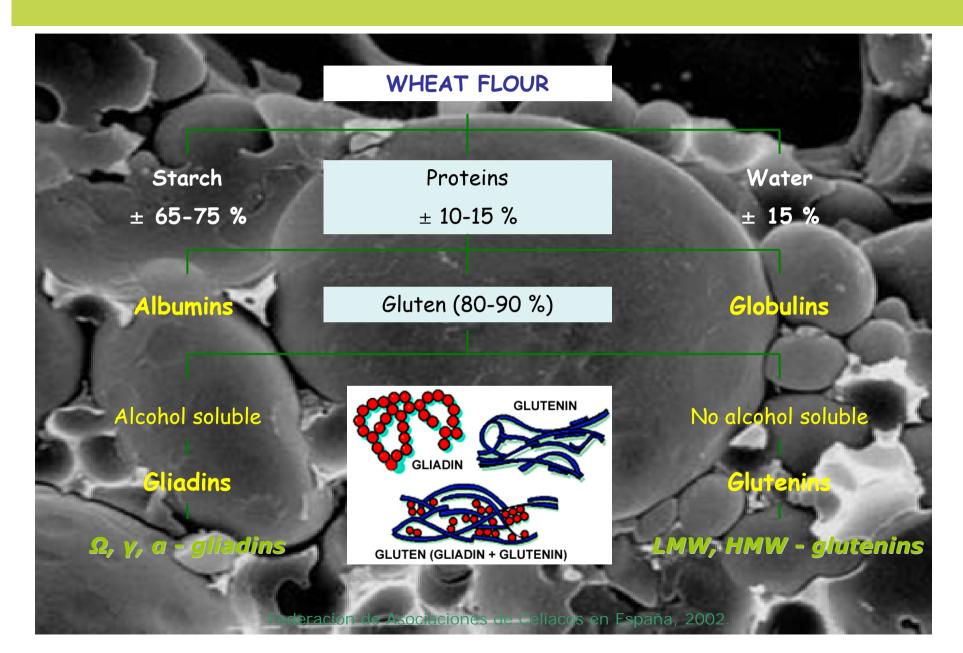
		J		de ein	Star	AMEn (kcal/kg)		
	Mean	SD	Mean	SD	Mean	SD	Mean	SD
CVB-2007	86.8	1.5	11.1	1.0	58.7	1.9	2868	-
INRA-2002	86.8	1.1	10.5	0.9	60.5	1.9	2880	-
FEDNA-2002	88.6	-	11.2	-	59.0	-	3150	-
Rostagno- 2005	87.7	-	11.5	-	54.9	-	3046	-
Gutiérrez del Álamo et al., 2009	88.2	1.9	11.7	2.0	58.3	2.2	2878	136


VARIATION IN AMEn


Histogram of the wheat AMEn taken from different feed factories around Europe



WHEAT GRAIN


PAERSON CORRELATIONS

Item ¹	Ileal starch digestibility	Fecal starch digestibility	Wheat AMEn
СР	-0.609	-0.567	-0.280
	(<0.0001)	(0.0001)	(0.029)
ASH	-0.023	-0.062	-0.170
	(0.883)	(0.702)	(0.235)
ST	0.447	0.469	0.418
	(0.003)	(0.002)	(0.002)
EE	-0.388	-0.287	0.060
	(0.031)	(0.072)	(0.677)
CF	0.340	0.180	0.132
	(0.031)	(0.265)	(0.360)
NDF	-0.419	-0.372	0.240
	(0.007)	(0.017)	(0.092)
ADF	0.097 (0.551)	0.202 (0.211)	-0.072 (0.616)
ADL	-0.185 (0.250)	0.139 (0.391)	-0.301 (0.033)
SW	0.228	0.087	0.070
	(0.156)	(0.590)	(0.624)
VISC	0.236 (0.141)	0.098 (0.545)	-0.136 (0.344)

¹ CP = crude protein; ST = starch; EE = ether extract; CF = crude fiber; NDF = neutral-detergent fiber; ADF = aciddetergent fiber; ADL = acid-detergent lignin; SW = specific weight; VISC = viscosity.

WHEAT PROTEIN

WHEAT PROTEIN

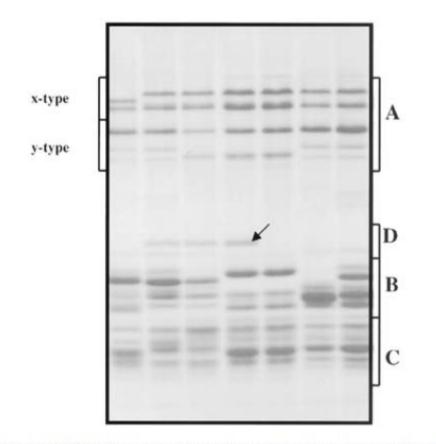
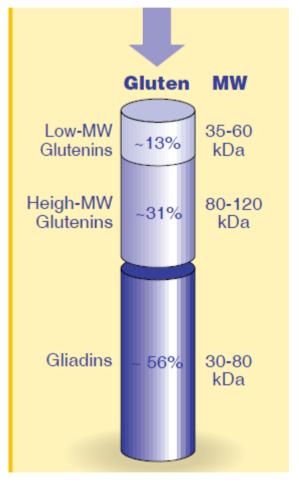
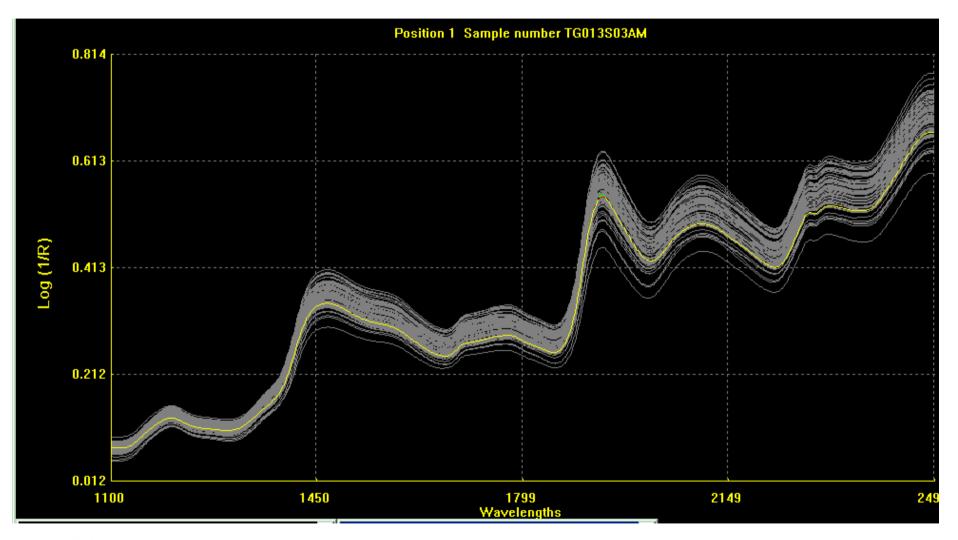
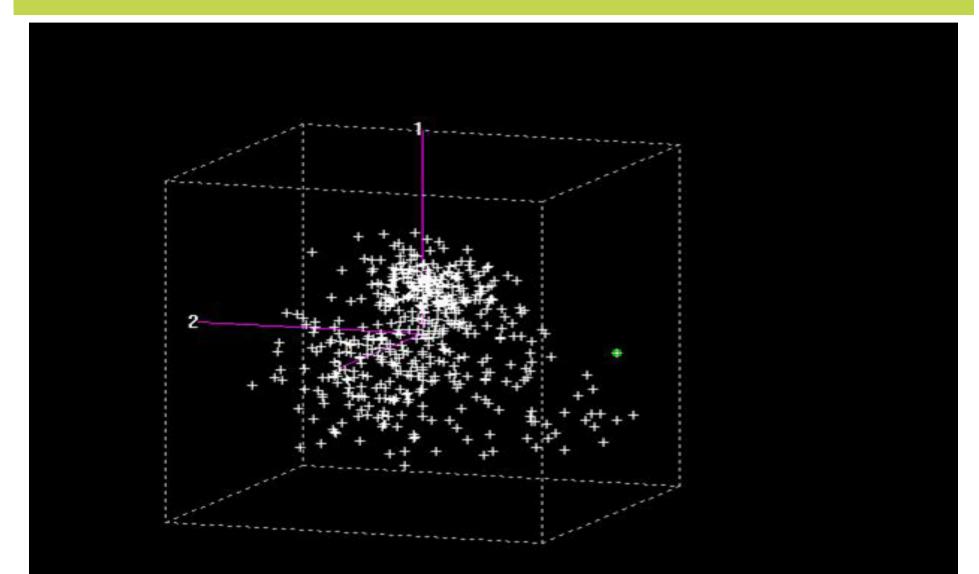



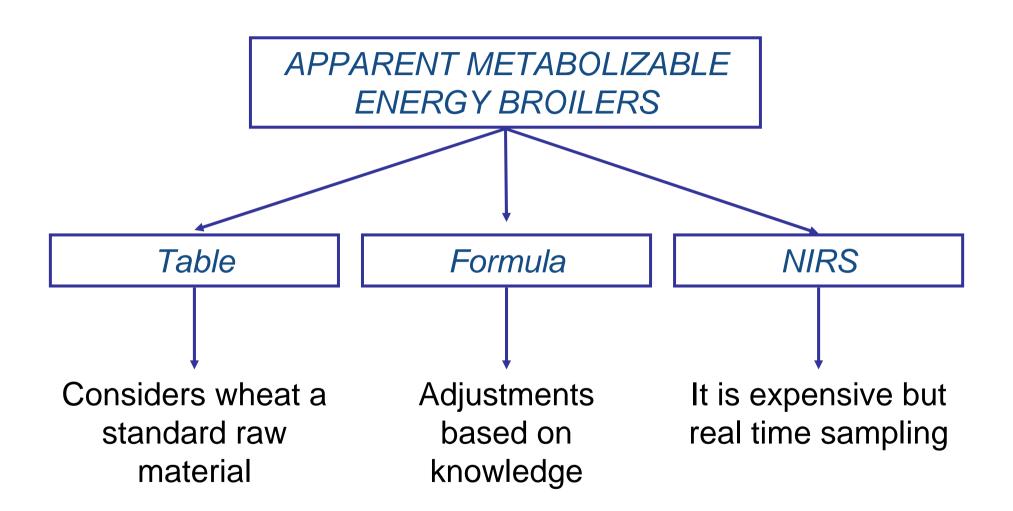
Fig. 2. SDS-PAGE of polymeric protein (after reduction to subunits), performed according to the one-step one-dimensional procedure of Gupta and MacRitchie (1991) (Gianibelli unpublished results). Group A: HMW glutenin subunits showing x- and y-type glutenin subunits. Groups B-, C-, D-: LMW glutenin subunits. Arrow indicates subunit D.


FORMULA

 CVB-2007 (AME_{broilers}, kcal/kg) =
 3.72 x CP x dig. CP + 9.28 x CFAT x dig. CFAT + 4.14 x NFE x dig. NFE

NFE = *DM* – *Ash* – *CP* – *CFAT* – *CFIBRE* (consists of carbohydrates, sugars, starches, and a major portion of the hemicellulose)




Nutreco, 2010

Nutreco, 2010

ESTIMATING WHEAT AMEn

CONCLUSION

- AMEn of wheat is variable and depends on factors until know not controlled by nutritionists
- Specific weight is not the answer to buy wheats
- There is no knowledge on how and why to buy a certain wheat crop
- Starch is the main factor affecting AMEn but
- Modifications to the predicting formula can be applied based on knowledge
- NIRS is a good tool to determine wheat quality (AMEn) in each sample arriving to the feed mill

THANKS

