Session 18 - devries@ufl.edu

Economic aspects of dairy fertility in the USA

Albert De Vries

Department of Animal Sciences University of Florida Gainesville, Florida, USA

EAAP Annual Meeting, Heraklion, Crete Island, Greece, August 23-27, 2010

Pregnancies by breeding method

55% of all operations used natural service bulls

NAHMS Dairy 2007 (2009)

Why Do We Use Synchronization Protocols?

- Inefficiencies have led to much research in the area of timed artificial insemination (TAI).
 - Ensures all cows get bred by certain day post calving
 - Reduces the need for estrus detection
- Pursley et al. (1995) Ovsynch protocol
- Many changes in synchronization protocols in the past 15 years
- Ability to manipulate cows estrous cycles has drastically improved P/AI for first postpartum TAI

Dr. Todd Bilby, Texas A&M University

Some synchronization programs + Cost combinations of: prostaglandin, GnRH, progesteron

How likely is estrous synchronization? 727 herds, eastern USA, >200 cows (2006)

De Vries et al. (2010)

Value of increased reproductive efficiency

M D D

Actual farm data not available

Better reproduction ->

Pregnancy rate vs. days open by service rate (SR) and conception rate (CR)

180 160 140 Days open 120 39% SR 24% CR **-**51% SR 34% CR 100 44% CR ← 76% SR 80 60 0% 10% 20% 30% 40% **Pregnancy rate**

Simulation; De Vries (2010)

Effect of service rate (SR) and conception rate (CR) on profitability

Value of 1 percentage unit increase in pregnancy rate by service rate (SR) and conception rate (CR)

- <mark>Summer heat stress</mark>

Florida seasonality

Linear programming model

- Individual animal decisions
 - Parity (0-10), stage (1-11), season (1-52)
 - %kept (1), %inseminated (3), %heifer calves kept (3)
- Herd constraints
 - Heifer calves kept > heifer calves born
 - Available cow slots, ...
- Objective
 - Profit/cow slot/year, ...
- Model
 - 76,000 decision variables
 - Excel 2010 + Gurobi Solver

"I think you should be more explicit here in step two."

Seasonal herd demographics

constraint: available cow slots

1 insemination type: relative conception rate 100%; cost \$20

Calvings and heifer calves

constraint: available cow slots

Improved reproduction

- Choice of 3 insemination options
 - **\$20**, relative conception rate **100%** (default)
 - \$40, relative conception rate 125%
 - \$60, relative conception rate 150% (embryo transfer)

Which option is best for each individual animal class? (optimal mix?)

Optimal mix

constraint: available cow slots

3 insemination types available: cost, relative conception rate

Results 4 scenarios

Scenario	Profit/slot/year	Profit/100kg milk
Only \$20, 100% rel. CR	\$354	\$3.75
Only \$40, 125% rel. CR	\$371	\$3.89
Only \$60, 150% rel. CR	\$378	\$3.94
Optimal mix	\$390	\$4.07

Miking

nstraint

Optimal mix constraint: available milking slots

3 insemination types available: cost, relative conception rate

Summary

- Natural service bulls and estrous synchronization programs are widely used in USA
- Few economic comparisons of repro programs
- Value of reproductive improvement depends on level of reproductive efficiency and herd constraints

Albert De Vries devries@ufl.edu

