Session 16 Poster 23

EFFECT OF PRODUCTION METHOD ON COMPOSITION OF CHEESES FROM MERINO SHEEP MILK

Tadeusz Pakulski, Elżbieta Pakulska National Research Institute of Animal Production Experimental Station Kołuda Wielka, 88-160 Janikowo, Poland; e-mail: etpakulscy@poczta.onet.pl

AIM OF INVESTIGATION

- to determine the effect of different production technologies on yield and composition of sheep milk cheeses was compared.

MATERIAL AND METHODS

The following types of cheese were made:

- Scalded semi-hard maturing cheese (SSH) made from casein using modifed technology of Kaschkawal –cheese
- Rennet white non-maturing cheese (RWN)
- Curd cheese (APC) from al milk proteins.

The SSH cheese was made as follows: pasteurized milk was acidified with cheese cultures and rennet was added. Blocks of cheese moulded from cheese mass and pressed for 2-2,5 h, after which cheese mass cut and treated for1-1,1,5 min. with hot (75°C) brine. Cheese were moulded again, pressed for 20 h and left in ripening room, for 4-6 weeks. RWN – milk was curdled with rennet, cheese was moulded from curdled cheese mass, pressed for 24 h and salted to obtain ready-to-eat product. APC cheese obtained by the acid-rennet method as a result of long-term (<20 h) curdling into moulds and pressed for several hours. No salt was added of technological process when cheese APC was made.

RESULTS

	COMPOSITION OF:			
	MILK	Cheese - SSH	Cheese - RWN	Cheese-ACP
Dry matter (%)	20,63	53,03 ^A	41,24 ^{Ba}	36,14 ^{Bb}
Ash (%)	No analized	3,92 ^{Aa}	2,72 ^{Ab}	1,09 ^B
Protein (%)	6,88	24,86 ^A	16,62 ^B	14,29 ^B
Fat (%)	8,29	21,12 ^A	17,61 ^B	16,49 ^B
Protein/fat ratio	0,83	1,186 ^{Aa}	0,950 ^b	$0,867^{B}$
Energetic value kcal	120	302 ^A	242 ^B	223 ^B
Yield of cheese mass (%)	-	24,51 ^C	32,86 ^B	43,51 ^A
Retention of dry matter (%)	-	63,40 ^B	66,21 ^B	77,24 ^A
Retention of milk protein (%)	-	90,66 ^A	79,33 ^B	90,56 ^A
Retention of milk fat (%)	-	61,94 <mark>B</mark>	70,43 ^B	88,73 ^A
Time of curdled milk (min.)	-	45 ^A	40 ^A	1042 ^B
Temperature of curdled milk ⁰ C	-	36,1 ^A	35,7 ^A	26,9 ^B

CONCLUSION

Production method had an effect on cheese yield and composition; yield was highest for SSH, retention of solids and fat was highest for ACP; retention of protein was highest for SSH and ACP – cheeses.