

Session 16:

Effects of the Texel Muscling QTL (TM-QTL) on lamb tenderness

N.R. Lambe¹, J.M. Macfarlane¹, R.I. Richardson², I. Nevison³, W. Haresign⁴, O. Matika⁵ and L. Bünger¹

Nicola.Lambe@sac.ac.uk

¹SAC, Edinburgh, U.K., ²University of Bristol, U.K.,
³BioSS, Edinburgh, UK, ⁴IBERS, University of Wales Aberystwyth, U.K.,
⁵The Roslin Institute and R(D)SVS, University of Edinburgh, U.K.

Introduction – direct effects of TM-QTL

- TM-QTL: Texel muscling quantitative trait locus
 - identified in pure-bred UK Texel sheep (chr 18)
 - increases loin muscling:
 - ultrasound muscle depth increased 4–7% in Texel lambs (Walling et al., 2004)
 - similar effects in crossbred lambs confirmed using ultrasound, CT and dissection (Macfarlane et al., 2009)
 - no substantial effects on muscling in other body regions

Introduction – indirect effects of muscling QTL on meat tenderness

- Callipyge mutation also on chr 18 (Cockett et al., 1996, 1999)
 - larger effect: increased muscling (~30%); reduced fatness
 - extremely tough meat, even after 24d aging (Duckett et al., 1998)
- TM-QTL in crossbred lambs (Lambe et al., 2010)
 - TM-QTL carriers tougher loin
 - no significant difference in toughness with > 7d aging
 - no effect on leg tenderness

Aims

- Investigate indirect TM-QTL effects on meat quality in purebred Texel lambs:
 - shear force tenderness (loin and leg)
 - sensory loin tenderness (assessed by taste panel)
- Investigate effects of TM-QTL:
 - inherited from sire

Methods – animals recorded

5

- Texel lambs
 - entire males and females
 - from 2 research farms, TM-QTL segregating
 - 7 sires carrying TM-QTL (3 common across farms)
- Pre- and post-slaughter measurements
 - ultrasound depth of loin muscle (UMD) pre-slaughter
 - slaughtered: average age 20 wks, CWT 15 kg
 - electrical stimulation; 7-9 d aging
 - one leg muscle and loin muscle dissected and weighed
 - right muscles shear force
 - left loin 40 to taste panel (14 untrained assessors; scale 1-10)

Methods – lamb genotypes

- Genotyped using 5 microsatellite markers
- Identification of haplotype inherited from sire
 - wildtype (+) , TM-QTL (TM), or unknown (?)
 - ? due to recombinant haplotypes or missing marker info
 - within-family linkage disequilibrium

	Number of re			
	+	ТМ	?	Total
shear force loin	83	116	10	209
shear force leg	83	116	10	209
sensory tenderness	13	18	(9)	40

Methods - statistical analyses

- Restricted maximum likelihood (REML) using Genstat (Payne et al., 2005)
- Dependent variables:
 - loin depth (UMD_loin) and weight (Wt_loin)
 - shear force of loin (ShF_loin) and leg (ShF_leg) muscles
 - sensory loin tenderness assessed by taste panel (TP_loin)
- Model terms included:
 - TM-QTL genotype (fixed effect)
 - for TP_loin: lamb ID, assessor (r), sample order (f)
 - for other traits: sire (r), sex, farm, litter size at rearing (f), carcass wt / live wt (cov), days aging (cov - ShF only)

Results – direct effects on loin muscling

Loin depth

- TM-QTL carriers: •
 - significantly deeper ultrasound muscle depth (0.8mm, 4%)
 - significantly heavier dissected loin muscle (19g, 5%)

Results – indirect effects on tenderness

• No sig. differences between genotypes in *loin* tenderness

Results – indirect effects on tenderness

Mechanical tenderness

• No sig. differences between genotypes in *leg* tenderness

Further analyses

- Identification of haplotypes inherited from sire & dam
- Investigate genotypic effects of TM-QTL:
 - 4 genotype groups considered:
 - homozygous non-carrier
 - heterozygote inheriting TM-QTL from dam
 - heterozygote inheriting TM-QTL from sire
 - homozygous carrier

(+/+) (+/TM) (TM/+) (TM/TM)

Number of records per genotype						_
	+/+	+/TM	TM/+	TM/TM	?	Total
ShF	40	17	53	34	65	209
TP	13			18	(9)	40

Further results – effects on loin muscling

- TM-QTL mode of inheritance (Macfarlane et al., 2010)
 - polar overdominance
 - imprinted (paternally expressed)
 - increases loin muscle only if single copy inherited from sire (TM/+ had 4 - 11% greater loin muscling than +/+)

Results - mechanical tenderness

• No significant differences between genotypes in tenderness

Summary and discussion

- Lambs inheriting TM-QTL from only their sire had significantly greater loin muscling than non-carriers
- Lambs inheriting TM-QTL were not significantly different in tenderness to non-carriers
 - after 7 9 d aging
- Taste panel testing did not identify a genotypic effect on sensory tenderness
 - small number of lambs
 - only homozygotes tested
 - no comparisons with TM/+ lambs

Conclusions

- Breeding programmes designed to produce lambs with 1 copy of TM-QTL, inherited from sire:
 - will increase loin muscling
 - without effects on tenderness (when meat aged \geq 7 days)
- Indirect effects of TM-QTL on ewe and lamb health and welfare traits are being studied
- Combined results will assess whether TM-QTL should be recommended for UK sheep industry

Acknowledgements

Svccess through Knowledge