Searching for Genes of Interest in Sheep

Moreno C.,
Elsen JM., Legarra A., Rupp R., Bouix J.,
Barillet F., Palhiere I., Larroque H., Allain D.,
Francois D., Robert C., Tosser-Klopp G.,
Bodin L., Mulsant P.

SAGA - LGC

ALIMENTATION
AGRICULTURE
ENVIRONNEMENT

Plan

- 1) Sheep genome and its markers
- 2) Detection of genes or QTL
- 3) Gene selection / genomic selection

The sheep genome: general description

Genome

- 52+2 chromosomes
- $3 \cdot 10^9 \text{ bases} = 3 \cdot 10^6 \text{ Kb}$
- 3 000 centimorgans (cM)

1 cM = 1% of recombination = 1000 Kb

- non-coding regions = 98 % genome
- coding regions = 2 % genome = 24 000 genes
- on average 15 genes /cM or 1 000 kB
- 1 gene ~ 1200 bases

Differences between microsatellite and SNP markers

Until now		Now
Microsatellite		SNP (single nucleotidic polymorphism)
Multiallelic marker		Bi allelic marker
In non-coding regions		Located in genes and non-coding regions (can be a causal mutation)
150 to 200 markers / panel	X 300	50 000 markers/ chip
1 marker / 10 to 20 cM		15 markers / cM
Cost = 100 to 300 €	X 1	Cost= 100 to 200 €

Plan

- ****
- 1) Sheep genome and its markers
 - 2) Detection of genes or QTL
 - 3) Gene selection/ genomic selection

QTL detection methods: LD LA

LA: Linkage Analysis

LD: Linkage Desequilibrium

Actual transmission between relatives

OTL detection is sure

Large genomic segments transmitted

→ low location accuracy (5 – 15 cM)

Lower location with microsat. than with SNP

Association between markers and QTL QTL detection is not sure

Small genomic segments historically preserved fine location accuracy (0.5 - 2 cM)

Impossible with microsat.

Steps after the QTL detection

- Fine gene location:
 positional candidate genes
 Genotyping new animals (different families, breeds...)
- Expression gene study:

 functional candidate genes

 Transcriptomic study on few extreme animals
- Search of candidate genes in data bases
 Using known sequence and comparative genomics
- Sequencing to identify new SNP

Detection of the causal mutation in a gene or a regulatory region

Causal mutations affecting production traits

Gene	Affected trait(s)	
PrP	Scrapie resistance	
BMPR1B		
GDF9	Ovulation rate	
BMP15		
GDF8	Muscle mass	
lphas1-casein	Casein content	
β -lactoglobulin	Cheese-making properties; milk yield	
ASIP	White dominant color	
TYRP1	Light fleece color	
Hairless (hr)	Hypotrichosis	

Plan

- 1) Sheep genome and its markers
- ✓ 2) Detection of genes or QTL
 - 3) Gene selection/ genomic selection

Without marker With markers without phenotype with phenotype (classical selection) **Hypotheses Polygenic** Monogenic Oligogenic **Polygenic** Requirements Genetic parameters + Genotype (+ pedigree) phenotype + pedigree **Selection** Gene assisted selection GAS **Marker assisted selection** Classical selection MAS **Genomic selection** GS Classical polygenic + MAS **Mixed selection** Classical polygenic + SAG

Mixed selections (classical + MAS / GAS) nice opportunities for sheep

On the same trait (i.e. milk yield + casein content)

- classical requirements needed
- genotyping of some markers only

On different traits (i.e. milk yield + PrP)

- classical requirements needed
- genotyping of some markers only
- no phenotype required for the trait selected by MAS or SAG
 - No need to identify the causal mutation
 - Problems with:
 - . no fully additive alleles (e.g. BMP15, GDF9)
 - . gene fixation and genetic variability (e.g. PrP)
 - . breakdown of disease resistance with one gene involved

Principle of genomic Selection

1/ Training population A+A'

- Phenotyped and genotyped animals (50K SNP chip)
- Prediction equations of marker effects are calculated using population A and verify using the population A'

2/ Application to the selected population B

- No phenotypes are needed, only genotyping
- Same accuracy for young males and females, particularly interesting when progeny testing is necessary

Genomic selection in sheep?

- Difficulties to perform genomic selection
 - Large training population (>1000 animals under progeny test)
 - Genotyping cost (>100€ or more / animal)
- Possible use:
 - Large selected population (dairy sheep breeds,...)
 - Very expensive selection criteria (e.g. disease resistant traits)

Conclusions

- 50K SNP chip revolution to detect genes and perform genomic selection
- 600K SNP chip and 3K SNP chip are in progress
 - → new opportunity for selection (selection of several breeds simultaneously, genotype imputation ...)
- But a bigger revolution is preparing: direct sequencing
- Future selection:
 - genomic selection for the biggest breeds and genes
 - mixed gene and polygenic selection for the other breeds

Thank you for your attention

