Analysis of the interactions between productive, nutritive and reproductive parameters from an experimental flock of Latxa dairy sheep

Díez-Unquera B., Beltrán de Heredia I., Arranz J., Amenabar M E., Mandaluniz N., Ugarte E., Ruiz R.

EAAP - Heraklion - 23th August 2010 - Session 15

INTRODUCTION

IMPORTANCE OF REPRODUCTIVE SUCCESS

FERTILITY → PRODUCTION → PROFITABILITY

Planning the productive schedule

Fit requirements and availability of resources

Labour organization

ON DAIRY SHEEP BREEDING SCHEMES

- Increase selection pressure (with Artificial Insemination)
- Constitution of the milking flock
- Milking period length
- % Milked ewes

INTRODUCTION

EXPERIMENTAL FLOCK OF LATXA SHEEP

- R+D Projects (since 1992):
 Reproduction (AI), nutrition, ethology, milk recording, animal health, management practices environmental, biomedicine, etc.
- 150 adult sheep + 50 yearlings
- 12 has (grazing from March to November)
- Artificial Insemination (100% of adult sheep) in August
- Milking: February to June
 - Milk Recording Program: milk yield
- Body Condition Score (BCS) and Live Weight (LW)

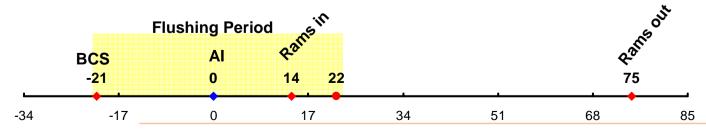
OBJECTIVES

- 1) To assess the effect of
- Age
- Previous lambing type:
 - Success at AI, natural mating, failure etc
- Productive performance:
 - Total milk yield
- Nutritional management:
 - Body condition score (BCS)
 - Flushing

upon fertility at AI and prolificacy of Latxa sheep

2) To **parameterise** the probabilities of reproductive success at AI according to these factors

MATERIAL & METHODS


REPRODUCTIVE MANAGEMENT

 Animals assigned to Flushing or No Flushing treatment (BCS measured)

Flushing during 6 weeks: 200 g Cereal / head / day + Grazing

Flushing Group
$$\begin{cases} \text{Sheep: } BCS < 2.5 \\ \text{Yearlings: } BCS \le 2.5 \end{cases}$$

- 2. Artificial Insemination (AI): cervical, fresh semen, last week of August
- 3. Natural Mating (14-75 post AI)

MATERIAL & METHODS

DATABASE

- 2000 records from 2000 to 2010 / 684 sheep/ 1735 lambings
- 1768 records of BCS before mating (since 2003)

FEATURES AND CATEGORIES

- Age: 1, 2, 3, 4, 5, and ≥ 6 years-old
- Previous lambing type:
 - 1 = Success at AI
 - 2 = Lambing from 1st cycle after Al
 - $3 = \text{Lambing from} \ge 2^{\text{nd}} \text{ cycle after AI}$
 - 0 = No lambing
- Productive performance:
 - Total milk yield (litres): low ($\langle P_{25} \rangle$), medium (P_{25} to P_{75}), high (P_{75})
- Nutritional management:
 - BCS: low (< 2.5), medium (2.5 to 3.0), high (≥ 3.0)
 - Flushing (since 2003): yes or no

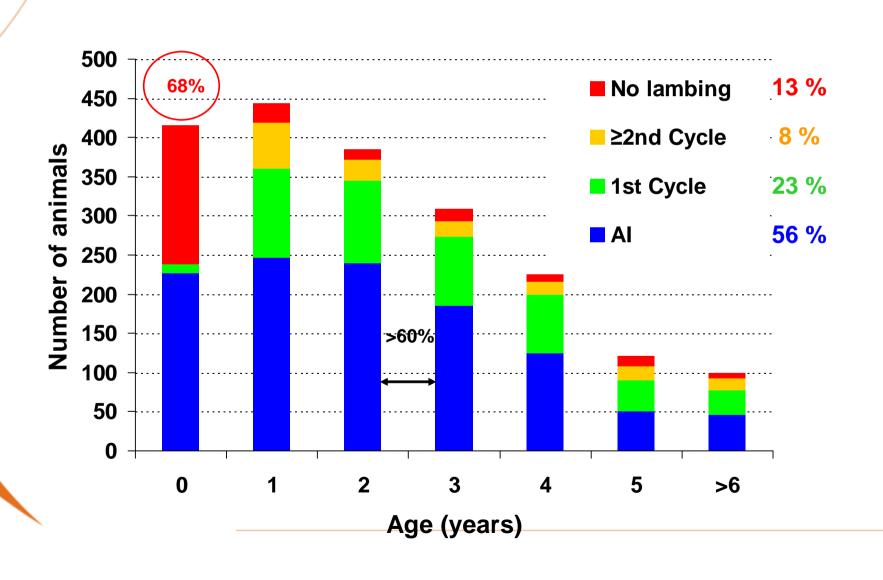
MATERIAL & METHODS

VARIABLES ANALYZED

- Fertility at AI
- Prolificacy at AI
- Prolificacy at NM

STATISTICAL ANALYSIS (SAS Stat)

- Descriptive
- Chi-square test (X2): Proc FREQ
- Linear Regression for categorical data: Proc LOGISTIC

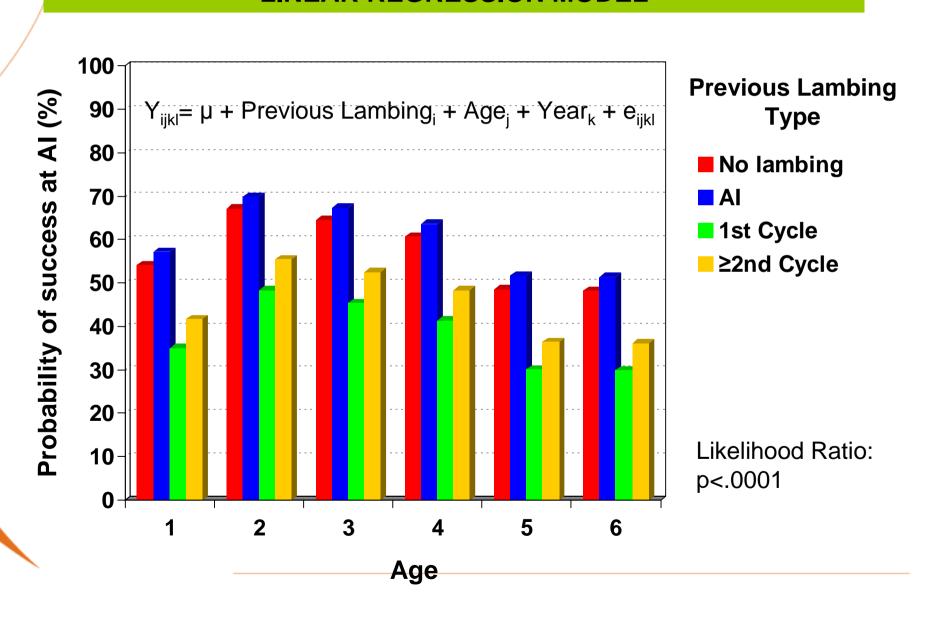

RESULTS

MEANS AND S.D.

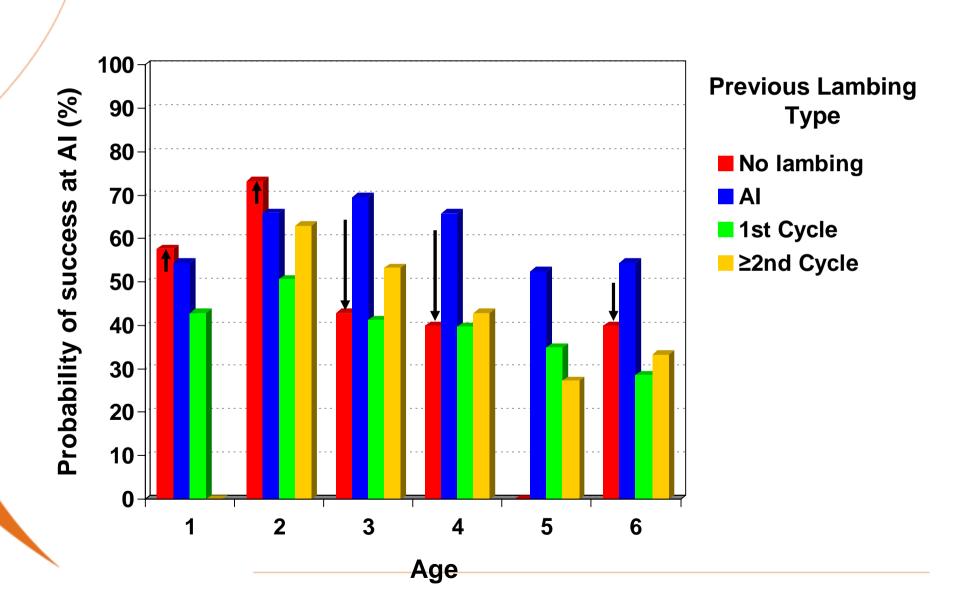
– Age (years):	2.12	(± 1.72)
– Weight (Kg):	57.5	(± 8.95)
- BCS:	2.62	(± 0.55)
Total milk yield (L):	180	(± 55.3)
– Fert. at AI (%):	56.2	(± 6.16)
– Fert. Total (%) (≥1year):	94.8	(± 2.21)
Prolificacy at AI:	1.55	(± 0.07)
Prolificacy at NM:	1.43	(± 0.09)

RESULTS

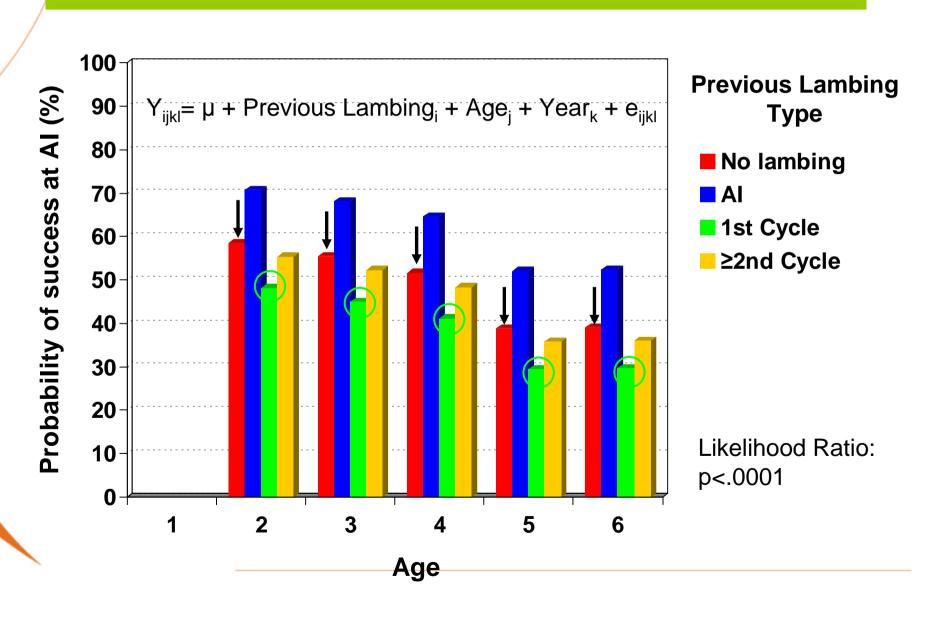
DATA DISTRIBUTION


RESULTS

FREQUENCY DISTRIBUTION


- chi-square

	Fertility AI	Prolificacy Al	Prolificacy NM
PREVIOUS LAMBING TYPE	<0.0001***		
AGE	0.0013**	<0.0001***	<0.0001***
YEAR	0.0029**	0.5133	0.0576
MILK PRODUCTION	0.3337		
BCS	0.8471	0.3163	0.0151*
FLUSHING	0.4159	0.7633	0.0792


PROBABILITY OF SUCCESS AT AI OBTAINED WITH THE LINEAR REGRESSION MODEL

PROBABILITY OF SUCCESS AT AI FROM REAL DATA

PROBABILITY OF SUCCESS AT AI OBTAINED WITH THE LINEAR REGRESSION MODEL WITHOUT 1 YEAR-OLD EWES

CONCLUSIONS

- According to the data available, the age of the sheep and the previous lambing type determines the success of AI in the following season
- Management practices such as flushing determined the absence of differences in the reproductive success of sheep with different BCS
- In order to model the expected success at AI of Latxa sheep, the equation obtained should be validated with data coming from commercial flocks

THANK YOU

