

Identification of established genetic variants associated with milk traits

Michael Orford¹, Ouranios Tzamaloukas¹, Christakis Papachristoforou¹, Georgia Hadjipavlou², Alkis Koumas² & Despoina Miltiadou¹

¹Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, P. O. Box 50329, 3603, Lemesos, Cyprus; ²Agricultural Research Institute, P.O. Box 2016, 1516 Lefkosia, Cyprus

THE MESSAGE

- * The presence of β -lactoglobulin (β -LG) genotypes and single nucleotide polymorphisms (SNPs) known to affect bovine milk traits was examined in small ruminant breeds of Cyprus
- Major intra-species genotypic differences were found between the Cyprus fat-tailed and Chios sheep breeds at the β-LG locus
- The β-LG genotype seems fixed in Cyprus caprine breeds

INTRODUCTION

- ➤ Dissecting the genetic basis of milk production traits would be of great benefit to the small ruminant dairy industry
- Genetic variants at several loci that associate with milk production traits have been mainly identified in dairy cattle populations

AIM:

Investigate the presence of β -lactoglobulin (β -LG) variants, growth hormone receptor (GHR) and DGAT1 single nucleotide polymorphisms (SNPs) in the four major purebred Cyprus sheep and goat breeds

METHODS

Sample: Genomic DNA from a total of 366 animals

- -246 Chios and 40 Cyprus fat-tailed sheep
- -40 Damascus and 40 Machaeras Goats

The animals were bred at the Agricultural Research Institute experimental station and at private farms

Genotyping (PCR, gel electrophoresis and DNA sequencing):

- A) β -lactoglobulin most common variants (A & B)
- B) Growth Hormone Receptor (GHR) variant F279Y
- C) DGAT1 K232A SNP

AKNOWLEDGEMENTS

- ➤ This work was supported by the Cyprus Research Promotion Foundation and the Cyprus University of Technology
- ➤ We thank the technical staff of the Animal Production section at the Agricultural Research Institute and the private breeders for management of the sheep and goat resource flocks

RESULTS

Significant differences in β -LG allele frequencies detected for the Chios and Cyprus fat-tailed sheep

Table 1. β-LG allele and genotype frequencies in Chios and Cyprus fat-tailed sheep breeds

Breed	No. of animals	<i>β-lactoglobulin</i> Genotype (%)			Allelic Frequency			
		AA	AB	BB	A-allele	B-allele		
Chios sheep	246	56.9	38.6	4.5	0.76	0.23		
Cyprus Fat- tailed sheep	40	12.8	48.7	38.5	0.37	0.63		
Chi-square (χ²) test (2 d.f.)*		56.4 (P<0.001)						

*Chi square test of independence between genotype frequency and sheep breed

The β-LG A allele appears to be fixed in the two Cyprus goat breeds

Table 2. β-LG allele and genotype frequencies in Damascus and Machaeras goat breeds

		<i>β-lactoglobulin</i> genotype			Allelic frequency	
Breed	No. of animals	AA	AB	BB	A-allele	B-allele
Damascus Goat	40	40	0	0	1	0
Machaeras Goat	40	40	0	0	1	0

The GHR F279Y and DGAT1 K232A polymorphisms were not detected in samples from the four Cyprus sheep and goat breeds studied

KEY POINTS

- Two genetic variants (A and B) at the β -LG locus were identified in animals from the two purebred Cyprus sheep breeds
- > Only the β-LG variant A was detected in the Cyprus Damascus and Machaeras goat breeds
- The Cyprus fat-tailed sheep was predominantly of the β -LG B type, with an unusually high frequency of the β -LG BB genotype compared to the Chios or other Mediterranean sheep breeds
- ➤ Polymorphisms GHR F279Y and DGAT1 K232A appear not to be present in the four major purebred sheep and goat breeds of Cyprus