

EAAP 2010 61st Annual Meeting of the European Association for Animal Production

AUGUST 23rd-27th, 2010 - HERAKLION, CRETE ISLAND, GREECE

Physiological and nutritional changes to maintain milk yield in late lactating dairy goats exposed to extreme heat stress conditions

Hamzaoui, S., A.A.K. Salama*, G. Caja, E. Albanell, C. Flores & X. Such

Grup de Recerca en Remugants (G2R), Departament de Ciencia Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra (Spain)

Introduction

- Goats perform well in arid zones.
- Goats are more tolerant to heat stress than dairy cows:
 - Lower BW : surface ratio.
 - Morphological adaptations (long ears, etc...).
 - Water conservation capacity and greater sweating rate.
- Few studies have been carried out on heat stress effects in <u>dairy</u> goats.

Introduction : Responses to HS

Objectives

Evaluation of heat stress effects:

- Nutritional: DMI, water balance, digestibility
- Lactational: Milk yield & milk composition
- Physiological: RT & RR
- Metabolites: NEFA & blood ions
- Acid-base indicators: pCO2, HCO₃, anion gap
- Stress indicators: blood haptoglobin & fecal corticosterone

Materials and Methods: Animals & treatments

- Eight multiparous Murciano-Granadina dairy goats in metabolic cages (194 ± 3 DIM)
 - **Treatments: 2** conditions of temperature and relative humidity:
 - Thermal neutral (TN; 15 to 20°C and 40 ± 5%; THI = 59 to 65).
 - Heat stress (HS) 89 7

Materials and Methods: Experimental design

Materials and Methods: Measurements

- Rectal temperatures and respiration rates were daily recorded at 0800, 1200, and 1700 h.
- DMI and water consumption (± 20g) were daily recorded.
- Milk yield of individual goats was daily recorded.
- Milk composition (TS, fat, protein, TP, and CN) was evaluated weekly using NIR (Foss NIRSyestems 5000, Hillerod, Denmark).
- Blood samples were weekly taken for analyses of NEFA (Wako Chemicals, Neuss, Germany) and haptoglobin (Olympus AU400 analyzer, Hamburg, Germany).

Materials and Methods: Measurements

Metabolic & acid-base status: at d 25 (8 am & 17 pm) using an i-Stat analyzer (Abbott, IL). Glucose, urea, pH, Na, K, hemoglobin, hematocrit, CO₂ & HCO₃ concentrations.

Digestibility: DM, OM, CP, ADF, and NDF (AOAC, 2003).

- Urine pH: samples at the last 2 d of each period.
- Fecal corticosterone: the last d of each period by RIA (RIA kit ICN Pharmaceutics, NY).

Materials and Methods: Statistical analyses

PROC MIXED of SAS version 9.1.3 for repeated measurements

• Model:

$$Y_{ijkl} = \mu + T_i + D_j + P_k + TD_{ij} + TP_{ik} + \varepsilon_{ijkl}$$

 T_i = effect of treatment (i = 1 or 2)

$$D_j = effect of the day (j = 1 to 35)$$

 P_k = effect of period (k = 1 or 2)

Data of digestibility, N balance, and fecal corticosterone were analyzed using PROC GLM of SAS.

Results: Rectal temperature

Daily rectal temperatures at 8, 12, and 17 h in goats under heat stress (HS) or thermal neutral (TN) conditions

Results: Respiration rate

Daily respiration rate at 8, 12, and 17 h in goats under heat stress (HS) or thermal neutral (TN) conditions

Results: Feed intake

Feed intake of dairy goats under thermal neutral (•; n = 8) or heat stress (•; n = 8) conditions

Results: Blood NEFA

NEFA in blood of dairy goats under thermal neutral (•; n = 8) or heat stress (•; n = 8) conditions

* Indicates differences between TN and HS at each time point

Results: Water balance

Water input and water losses in dairy goats under thermal neutral (TN) and heat stress (HS) conditions

	Treatment			P <
Item	TN	HS	SED	Treat.
Water intake, mL ¹	5,504	9,728	1,863	0.035
Water in food, mL	143	127	7	0.034
Water in milk, mL ¹	969	1,004	62	0.547
Urine volume, mL ¹	2,143	4,757	1,737	0.410
Water in feces, mL	1,426	825	144	0.002
Evaporation water, mL ¹	1,074	3,304	1,430	0.007

¹ Calculated by the difference between water input (water intake + water in food) and water losses in milk, urine, and feces without taking into account the water produced metabolically.

Results: Milk yield

Milk yield of dairy goats under thermal neutral (•; n = 8) or heat stress (•; n = 8) conditions

Results: Milk fat

Milk fat of dairy goats under thermal neutral (•; n = 8) or heat stress (°; n = 8) conditions

* Indicates differences between TN and HS at each time point

Results: Milk protein

Milk protein of dairy goats under thermal neutral (•; n = 8) or heat stress (•; n = 8) conditions

* Indicates differences between TN and HS at each time point

Results: Digestibility

Digestibility coefficients of dairy goats under thermal neutral (TN) and heat stress (HS) conditions

	Treatment			P <
Item	TN	HS	SED	Treat.
Dry matter	56.6	58.8	2.3	0.121
Organic matter	58.8	61.2	1.4	0.109
Crude protein	70.5	72.1	1.5	0.306
Neutral detergent fiber	36.0	38.8	1.9	0.157
Acid detergent fiber	35.1	38.2	1.7	0.094

Results: N balance

Nitrogen balance of dairy goats under thermal neutral (TN) and heat stress (HS) conditions

	Treatment			P <
Item	TN	HS	SED	Treat.
Intake, g/d	48.4	42.1	0.8	0.001
Fecal excretion, g/d	14.3	11.8	0.8	0.010
Urinary excretion, g/d	20.3	16.4	1.3	0.012
Apparent absorption, %	70.5	72.1	1.5	0.306
Retention, g/d	13.9	13.9	1.0	0.950

Results: Acid-base balance

AB indicators of dairy goats under thermal neutral (TN) and heat stress (HS) conditions

	TN		HS			<i>P</i> <
Item	0800 h	1700 h	0800 h	1700 h	SEM	Treat.
Na, mmol/L	140	140	142	141	1.2	0.161
K, mmol/L	3.8	4.2	3.7	4.3	0.1	0.793
CI, mmol/L	105.0	108.9	108.3	110.4	0.9	0.031
рН	7.42	7.38	7.42	7.42	0.01	0.156
CO ₂ , mmol/L	26.9	24.4	22.3	21.5	0.8	0.002
Anion gap, mmol/L	12.50	12.00	16.50	14.00	0.73	0.001
pCO ₂ , mm Hg	38.9	39.8	33.1	31.5	1.7	0.006
HCO ₃ ⁻ , mmol/L	25.71	23.41	21.29	20.51	0.83	0.003
Base excess	1.38	-1.75	-3.00	-4.00	0.87	0.005
Urine pH	9.09	8.94	8.91	8.85	0.08	0.108

Results: Haptoglobin

Plasma haptoglobin of dairy goats under thermal neutral (\square ; n = 8) or heat stress (\square ; n = 8) conditions

Results: Fecal corticosterone

Fecal corticosterone at d 35 of dairy goats under thermal (\blacksquare ; n = 8) or heat stress (\blacksquare ; n = 8) conditions

HS

ΤN

Conclusions: HS vs. TN dairy goats (1/2)

Heat-stressed dairy goats:

- Partially adapted to HS conditions after wk 3.
- Had lower DMI, but similar milk yield to TN when fed with the same F:C ratio.
- Mobilized body reserves (increased NEFA) in wk 1 to maintain milk yield under minimal DMI.
- Had lower milk protein, but similar milk fat.
- Maintained blood pH within the normal range by decreasing [HCO₃⁻] and increasing [CI⁻].
- Had graetr blood haptoglobin at d 7 which decreased thereafter when goats adapted to HS.

Conclusions: HS vs. TN dairy goats (2/2)

- Had similar fecal corticosterone to TN at d 35, indicating that it did not reflect chronic HS.
- Tended to increase digestibility (2 to 3 points), which may partially compensate for DMI decrease.
- Retained similar N to TN goats, but ingested N might have been directed to another functions rather than milk protein synthesis.
- **Further studies are needed to:**
- Test the HS effects in early lactation.
- Clarify whether reduced milk protein content is related to a nutrient limiting factor or reduced mammary protein synthesis...

Thanks for the attention