

The genetics of growth to maturity in commercial sheep

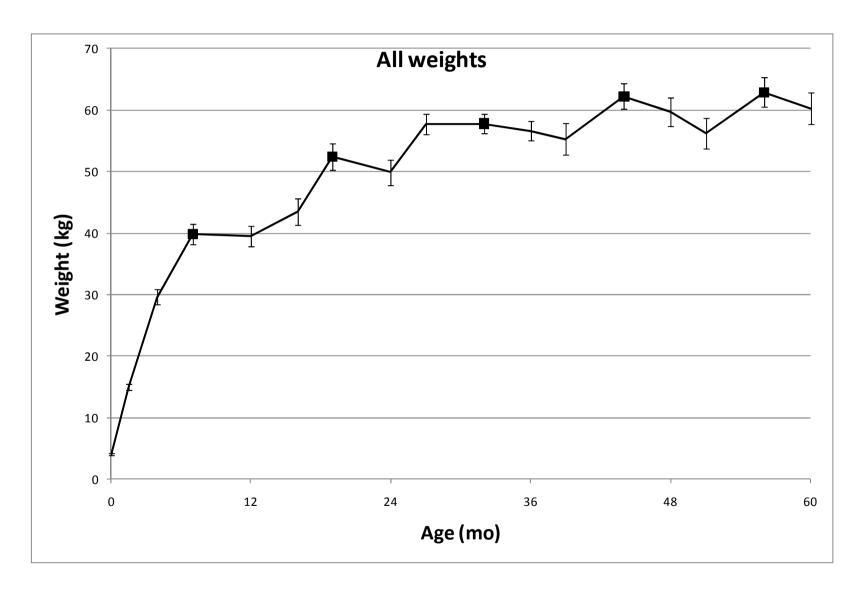
Geoff Pollott and Gabriel Galea

Motivation

- Mature weight is an important feature of sheep production - feed requirements
 - environmental emissions
- Modelling growth to maturity may provide useful early indications of mature weight
- > Appropriate genetic parameters required

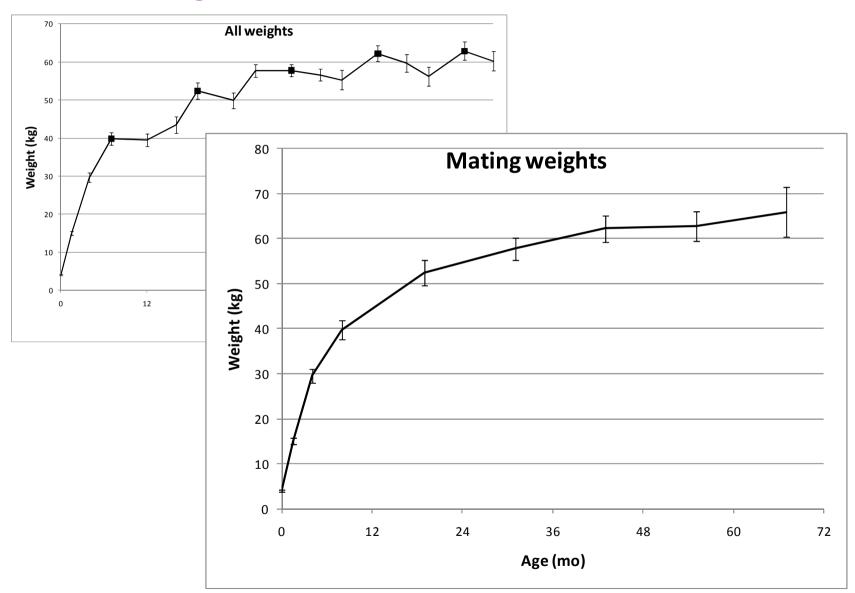
Data set

1,390 ewes from a single flock born over a 13-year period


Weight recorded at birth, 6, 16 weeks then annually at mating, lambing and weaning

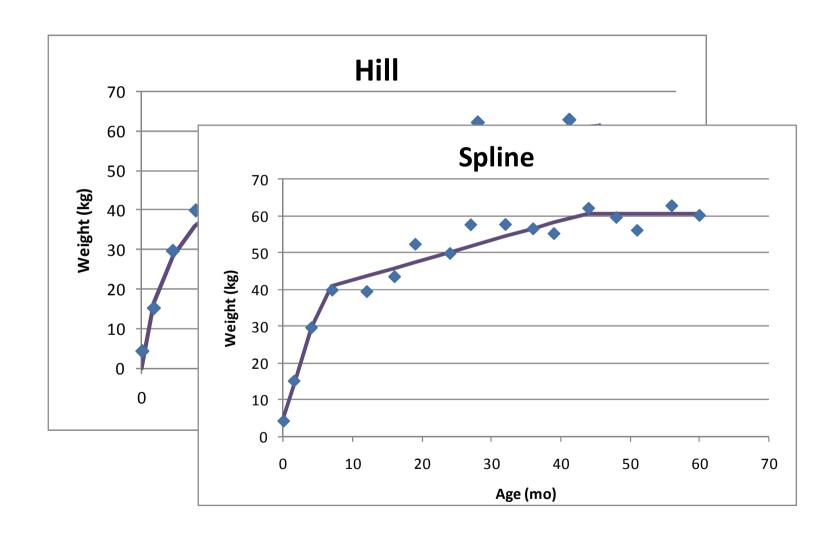
Two datasets analysed

- All available weights
- Lamb plus mating weights



Overall growth curve of ewes - 1

Overall growth curve of ewes - 2


Modelling growth to maturity

Previous work (Pollott and Galea, 2010a and b)

- Models commonly applied to lamb growth not appropriate (Gompertz, Brody, Logistic, polynomial)
- Hill model and 2-knot spline had lower mean RMS
- Standardised data could be used to fit random regressions for growth to maturity and estimate genetic parameters of live weight

Model fit – all mean data

Alternative growth models

Hill

```
Weight = (MWT<sub>EST</sub> t<sup>b1</sup>) / (b<sub>2</sub><sup>b1</sup> + t<sup>b1</sup>)
b1 – shape parameter; b<sub>2</sub> – maturing rate parameter
```

Spline

Weight =
$$MWT - [b_4 (knot - 6)] - [b_3 (6 - t)]$$

or $MWT - [b_4 (knot - t)]$ when $t > 6 < knot$

where MWT = mature weight; t = age (months) and $b_1 - b_4$ are constants

SAS NLIN used to fit individual ewe curves

Model effects used

Fixed effects

Year of birth (13), Birth type (3), Age of dam (7)

Random effects

Ewe – (additive genetic effect)

Residual

Not maternal effect – not enough daughters

ASReml used for all genetic analyses

Results

Genetic parameters – Hill curve All weights

Weight = $(MWT_{EST} t^{b1}) / (b_2^{b1} + t^{b1})$

	MWT	MWT _{EST}	b ₁	b_2
Actual mature weight (MWT)	0.40	0.91	0.03	0.44
	±0.087	±0.052	±0.928	±0.197
Estimated mature weight (MWT _{EST})	0.77	0.23	0.25	0.76
	±0.015	±0.081	±1.52	±0.101
b ₁	-0.08 ±0.037	-0.11 ±0.036	0.01 ±0.052	NA
b ₂	0.37	0.83	-0.04	0.40
	±0.033	±0.012	±0.036	±0.087

 b_1 – shape parameter; b_2 – maturing rate parameter

Genetic parameters – Hill curve Mating weights

Weight = $(MWT_{EST} t^{b1}) / (b_2^{b1} + t^{b1})$

	MWT	MWT _{EST}	b ₁	b ₂
Actual mature weight (MWT)	0.43	0.92	-0.29	0.62
	±0.096	±0.045	±0.178	±0.179
Estimated mature weight (MWT _{EST})	0.80	0.33	-0.64	0.90
	±0.015	±0.090	±0.122	±0.063
b ₁	-0.40	-0.65	0.26	-0.92
	±0.035	±0.024	±0.075	±0.098
b_2	0.37	0.83	-0.64	0.20
	±0.035	±0.012	±0.023	±0.081

 b_1 – shape parameter; b_2 – maturing rate parameter

Genetic parameters – Spline model All weights

Weight =
$$MWT - [b_4 (knot - 6)] - [b_3 (6 - t)]$$
 when $t < 6$
or $MWT - [b_4 (knot - t)]$ when $t > 6 < knot$

	MWT	b_3	b_4
Mature weight (MWT)	0.43	0.56	0.51
	±0.089	±0.149	±0.367
b ₃	0.25	0.29	-0.65
	±0.037	±0.080	±0.291
b ₄	0.14	-0.39	0.07
	±0.037	±0.031	±0.063

 b_3 – early growth rate; b_4 – late growth rate

Genetic parameters – Spline model Mating weights

Weight =
$$MWT - [b_4 (44 - 6)] - [b_3 (6 - t)]$$
 when $t < 6$
or $MWT - [b_4 (44 - t)]$ when $t > 6 < 44$

	MWT	b ₃	b ₄
Mature weight (MWT)	0.43	0.53	0.53
	±0.089	±0.145	±0.274
b ₃	0.34	0.29	-0.46
	±0.037	±0.080	±0.297
b ₄	0.23	-0.32	0.07
	±0.038	±0.035	±0.063

 b_3 – early growth rate; b_4 – late growth rate

Discussion points

Hill curve gives more tractable results with mating weights dataset

Spline model results almost invariant to dataset used

Early growth more heritable than later growth

Mature weight related to both early and late growth rates – but growth rates negatively correlated

Conclusions

Growth to maturity has different genetic properties to lamb growth

Early growth and mature weight moderately correlated

Both sets of curve parameters are heritable


Hill curve parameters highly correlated

Thank you for your attention

Genetic correlation structure from random regression model

