Bias in variance component estimation in culled data

Árnason, T.¹, Albertsdóttir, E.¹, Eriksson S.², Fikse WF.² & Sigurdsson Á.¹ AUI¹, SLU²

Background

- Pre-selection or culling on an unobservable criterion before testing is a common problem in horse breeding
- Culling on criterium correlated with tested traits causes bias in estimation of genetic parameters and genetic evaluations (Robertson,1966,Meyer & Thompson,1984)

Background cont.

- Survival = Racing-status = Test-status = 0/1 binary trait
- If record available on Gaussian trait then test-status=1 else test-status=0
- Requires pedigree information on culled animals
- Estimated heritability of test-status moderate to high in many horse populations
- EBVs for test-status often important

Background cont.

- Árnason(1999) showed by simulations that bivariate genetic evaluations involving racingstatus and a Gaussian trait reduced selection bias, increased accuracy, and increased genetic response when true genetic parameters were available
- The procedure was validated by method R in Swedish standardbred trotters (SST)
- Racing-status has been included in MT-AM-BLUP for genetic evaluations of SST since 1995

Background cont.

- Genetic and environmental correlations between test-status and the Gaussian performance traits are not readily estimable
- Genetic covariance estimable if environmental covariance is constrained to predifined value
- Expected environmental covariance?

Objective

 To study the consequences of assuming zero environmental covariances between a binary test-status and a Gaussian trait on the estimates of genetic parameters in culled data, when the true covariances deviates from zero, using REML and Gibbs sampler methods

Simulated data

- Base population: random 25 males 500 females
 = 525 animals
- 3 generations random mating 500 females and 25 males per generation = 1575 animals. No phenotypes
- 5 generations: Selection on phenotypic records (mass selection across generations): 500 females and 25 males selected per generation producing 1500 of spring per generation = 7500 records
- Pedigree list=9600 animals

Simulation procedure

- True genetic parameters: h²₁ = h²₂ = 0.4; r_A=0.5; r_E=0.0; 0.5; -0.5
- BV=a=0.5a_s + 0.5a_d + m (Mendelian sampling term)
- m=√(0.5 c)C_G z; c=(1-0.5(F_s + F_D)); V_G=C_GC'_G;
 z=bivarate random sampled vector (0,I)
- $P=Xb + a + C_e z$ (underlying phenotypes)
- Fixed effects = generation effects
- Culling frequency 0.5 (σ_{P1} <0) and 0.8 (σ_{P1} <0.84)
- 10 replicates

Model and methods for estimation of genetic parameters

- DMU (Jensen & Madsen, 2008)
- Animal Model Average Information Restriced Maximum Likelihood (AM-AI-REML)
- Multiple Trait Animal Model Linear Threshold Markov Chain Monte Carlo Gibbs Sampler (MT-AM-LT-MCMC-GS)

Results

Estimated variance components for the Gaussian trait ($\sigma_A^2 = 0.4$; $\sigma_E^2 = 0.6$; $r_A = 0.5$). *ST-AM-AI-REML* analysis

r _E	Var(A) (s.e.)	Var(E) (s.e.)	ĥ² (s.e)
50% culling			
0.0	0.383 (0.016)	0.588 (0.014)	0.394 (0.015)
0.5	0.338 (0.012)	0.509 (0.010)	0.399 (0.013)
-0.5	0.498 (0.020)	0.520 (0.016)	0.489 (0.018)
80% culling			
0.0	0.403 (0.014)	0.565 (0.011)	0.416 (0.012)
0.5	0.334 (0.022)	0.469 (0.015)	0.414 (0.036)
-0.5	0.534 (0.029)	0.485 (0.018)	0.522 (0.021)

Estimated variance components for the Gaussian trait ($\sigma_A^2 = 0.4$; $\sigma_E^2 = 0.6$; $r_A = 0.5$). **ST-AM-AI-REML** analysis

\mathbf{r}_{E}	Var(A) (s.e.)	Var(E) (s.e.)	ĥ² (s.e)
50% culling			
0.0	0.383 (0.016)	0.588 (0.014)	0.394 (0.015)
0.5	0.338 (0.012)	0.509 (0.010)	0.399 (0.013)
-0.5	0.498 (0.020)	0.520 (0.016)	0.489 (0.018)
80% culling			
0.0	0.403 (0.014)	0.565 (0.011)	0.416 (0.012)
0.5	0.334 (0.022)	0.469 (0.015)	0.414 (0.036)
-0.5	0.534 (0.029)	0.485 (0.018)	0.522 (0.021)

Estimated variance components for the Gaussian trait ($\sigma_A^2 = 0.4$; $\sigma_E^2 = 0.6$; $r_A = 0.5$). **MT-AM-LT-GS** analysis

r _E	Var(A)	Var(E)	ĥ² (s.e)	r̂ _A (s.e)
	(s.e.)	(s.e.)		
50% culling				
0.0	0.397 (0.016)	0.606 (0.013)	0.395 (0.014)	0.478 (0.021)
0.5	0.349 (0.012)	0.519 (0.009)	0.402 (0.013)	0.278 (0.040)
-0.5	0.534 (0.017)	0.540 (0.014)	0.497 (0.018)	0.621 (0.018)
80% culling				
0.0	0.402 (0.019)	0.598 (0.010)	0.401 (0.014)	0.466 (0.048)
0.5	0.325 (0.019)	0.491 (0.013)	0.396 (0.020)	0.100 (0.041)
-0.5	0.610 (0.035)	0.505 (0.019)	0.544 (0.022)	0.715 (0.027)

Estimated variance components for the Gaussian trait ($\sigma_A^2 = 0.4$; $\sigma_E^2 = 0.6$; $r_A = 0.5$). **MT-AM-LT-GS** analysis

r _E	Var(A) (s.e.)	Var(E) (s.e.)	ĥ² (s.e)	r̂ _A (s.e)
50% culling				
0.0	0.397 (0.016)	0.606 (0.013)	0.395 (0.014)	0.478 (0.021)
0.5	0.349 (0.012)	0.519 (0.009)	0.402 (0.013)	0.278 (0.040)
-0.5	0.534 (0.017)	0.540 (0.014)	0.497 (0.018)	0.621 (0.018)
80% culling				
0.0	0.402 (0.019)	0.598 (0.010)	0.401 (0.014)	0.466 (0.048)
0.5	0.325 (0.019)	0.491 (0.013)	0.396 (0.020)	0.100 (0.041)
-0.5	0.610 (0.035)	0.505 (0.019)	0.544 (0.022)	0.715 (0.027)

Jump to the Conclusions

Conclusions

- For the parameter combination tested, heritability estimates for the Gaussian trait were significantly biased (upwards) when r_E was negative
- Genetic correlations between test-status and the Gaussian trait were systematically underestimated when r_E was positive and overestimated when r_E was negative

Conclusions - in a nutshell

- The assumption of zero environmental correlation between the culling criterion teststatus and a Gaussian trait may sometimes lead to bad estimates of genetic parameters
- Works well if the true r_E is zero (or known)
- Informative prior values for r_E would be valuable

Future directions

- The next step in this study is to investigate the consequences of including test-status in the genetic evaluations of a Gaussian trait in bivariate analysis when the genetic parameters used are wrong
- Preliminary results show that inclusion of test status generally enhances genetic progress even if the genetic parameters used deviate considerably from the true ones!
- Validation important in each case!

Ευχαριστώ - Thank you

