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Background
 Pre-selection or culling on an unobservable

criterion before testing is a common problem in 
horse breeding

 Culling on criterium correlated with tested
traits causes bias in estimation of genetic
parameters and genetic evaluations
(Robertson,1966,Meyer & Thompson,1984)



Background cont.
 Survival = Racing-status =Test-status = 0/1 

binary trait

 If record available on Gaussian trait then
test-status=1 else test-status=0

 Requires pedigree information on culled animals

 Estimated heritabilty of test-status moderate 
to high in many horse populations

 EBVs for test-status often important



Background cont.
 Árnason(1999) showed by simulations that 

bivariate genetic evaluations involving racing-
status and a Gaussian trait reduced selection
bias, increased accuracy, and increased genetic
response when true genetic parameters were
available

 The procedure was validated by method R in 
Swedish standardbred trotters (SST)

 Racing-status has been included in MT-AM-
BLUP for genetic evaluations of SST since
1995



Background cont.
 Genetic and environmental correlations

between test-status and the Gaussian
performance traits are not readily estimable

 Genetic covariance estimable if environmental
covariance is constrained to predifined value

 Expected environmental covariance ? 



Objective
 To study the consequences of assuming zero
environmental covariances between a binary
test-status and a Gaussian trait on the 
estimates of genetic parameters in culled
data, when the true covariances deviates from 
zero, using REML and Gibbs sampler methods



Simulated data 
 Base population: random 25 males 500 females

= 525 animals
 3 generations random mating 500 females and 

25 males per generation = 1575 animals. No 
phenotypes

 5 generations: Selection on phenotypic records
(mass selection across generations): 500 
females and 25 males selected per generation 
producing 1500 ofspring per generation = 7500 
records

 Pedigree list=9600 animals 



Simulation procedure
 True genetic parameters:  h2

1 =   h2
2 = 0.4; 

rA=0.5;  rE=0.0; 0.5; -0.5

 BV=a=0.5as +  0.5ad + m (Mendelian sampling 
term)

 m=√(0.5 c)CG z;   c=(1-0.5(Fs + FD)); VG=CGC’G; 
z=bivarate random sampled vector (0,I)

 P=Xb + a +Cez (underlying phenotypes)

 Fixed effects = generation effects

 Culling frequency 0.5 (σP1<0) and 0.8 (σP1<0.84)

 10 replicates



Model and methods for estimation
of genetic parameters

 DMU (Jensen & Madsen, 2008)

 Animal Model Average Information Restriced
Maximum Likelihood (AM-AI-REML)

 Multiple Trait Animal Model Linear Threshold
Markov Chain Monte Carlo Gibbs Sampler (MT-
AM-LT-MCMC-GS)



Results



Estimated variance components for the Gaussian trait (σ2
A = 

0.4; σ2
E = 0.6; rA = 0.5). ST-AM-AI-REML analysis

rE Var(A) (s.e.) Var(E) (s.e.) ĥ2 (s.e)

50% culling

0.0 0.383 (0.016) 0.588 (0.014) 0.394 (0.015)

0.5 0.338 (0.012) 0.509 (0.010) 0.399 (0.013)

-0.5 0.498 (0.020) 0.520 (0.016) 0.489 (0.018)

80% culling

0.0 0.403 (0.014) 0.565 (0.011) 0.416 (0.012)

0.5 0.334 (0.022) 0.469 (0.015) 0.414 (0.036)

-0.5 0.534 (0.029) 0.485 (0.018) 0.522 (0.021)
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Estimated variance components for the Gaussian trait (σ2
A = 

0.4; σ2
E = 0.6; rA = 0.5). MT-AM-LT-GS analysis

rE Var(A) 

(s.e.)

Var(E) 

(s.e.)

ĥ2 (s.e) ȓA (s.e)

50% culling

0.0 0.397 (0.016) 0.606 (0.013) 0.395 (0.014) 0.478 (0.021)

0.5 0.349 (0.012) 0.519 (0.009) 0.402 (0.013) 0.278 (0.040)

-0.5 0.534 (0.017) 0.540 (0.014) 0.497 (0.018) 0.621 (0.018)

80% culling

0.0 0.402 (0.019) 0.598 (0.010) 0.401 (0.014) 0.466 (0.048)

0.5 0.325 (0.019) 0.491 (0.013) 0.396 (0.020) 0.100 (0.041)

-0.5 0.610 (0.035) 0.505 (0.019) 0.544 (0.022) 0.715 (0.027)
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Jump to the Conclusions



Conclusions
 For the parameter combination tested, 

heritability estimates for the Gaussian trait
were significantly biased (upwards) when rE

was negative 

 Genetic correlations between test-status and 
the Gaussian trait were systematically
underestimated when rE was positive and 
overestimated when rE was negative 



Conclusions - in a nutshell
 The assumption of zero environmental

correlation between the culling criterion test-
status and a Gaussian trait may sometimes lead
to bad estimates of genetic parameters

 Works well if the true rE is zero (or known)

 Informative prior values for rE would be 
valuable



Future directions
 The next step in this study is to investigate

the consequences of including test-status in 
the genetic evaluations of a Gaussian trait in 
bivariate analysis when the genetic parameters 
used are wrong

 Preliminary results show that inclusion of test 
status generally enhances genetic progress 
even if the genetic parameters used deviate
considerably from the true ones!

 Validation important in each case!



Ευχαριστώ - Thank you


