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Background

 Pre-selection or culling on an unobservable
criterion before testing is a common problem in
horse breeding

e Culling on criterium correlated with tested
traits causes bias in estimation of genetic

parameters and genetic evaluations
(Robertson, 1966 ,Meyer & Thompson,1984)




Background cont.

e Survival = Racing-status =Test-status = 0/1
binary trait

» If record available on Gaussian trait then
test-status=1 else test-status=0

 Requires pedigree information on culled animals

» Estimated heritabilty of test-status moderate
to high in many horse populations

* EBVs for test-status often important




Background cont.

* Arnason(1999) showed by simulations that
bivariate genetic evaluations involving racing-
status and a Gaussian trait reduced selection
bias, increased accuracy, and increased genetic
response when true genetic parameters were

available

» The procedure was validated by method R in
Swedish standardbred trotters (SST)

 Racing-status has been included in MT-AM-
BLUP for genetic evaluations of SST since
1995




Background cont.

e Genetic and environmental correlations
between test-status and the Gaussian
performance traits are not readily estimable

e Genetic covariance estimable if environmental
covariance is constrained to predifined value

» Expected environmental covariance ?




Objective

» To study the consequences of assuming zero
environmental covariances between a binary
test-status and a Gaussian trait on the
estimates of genetic parameters in culled
data, when the true covariances deviates from
zero, using REML and Gibbs sampler methods




Simulated data

* Base population: random 25 males 500 females
= 525 animals

3 generations random mating 500 females and
25 males per generation = 1575 animals. No
phenotypes

» 5 generations: Selection on phenotypic records
(mass selection across generations): 500
females and 25 males selected per generation
producing 1500 ofspring per generation = 7500
records

* Pedigree list=9600 animals




Simulation procedure

e True genetic parameters: h?, = h?, = 0.4,
r,=0.5; re=0.0; 0.5; -0.5

* BV=a=0.5a, + 0.5a, + m (Mendelian sampling
term)

e m=/(0.5c)C; z; c=(1-0.5(F, + Fp)); V;=C.C.
z=bivarate random sampled vector (0,I)

» P=Xb + a +C,z (underlying phenotypes)

* Fixed effects = generation effects

* Culling frequency 0.5 (o,,<0) and 0.8 (o,,<0.84)

* 10 replicates




Model and methods for estimation
of genetic parameters

e DMU (Jensen & Madsen, 2008)

» Animal Model Average Information Restriced
Maximum Likelihood (AM-AI-REML)

* Multiple Trait Animal Model Linear Threshold
Markov Chain Monte Carlo Gibbs Sampler (MT-
AM-LT-MCMC-GS)




Results




Estimated variance components for the Gaussian trait (02, =
0.4; 0°:=0.6;r,=0.5). ST-AM-AIL-REML analysis
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Estimated variance components for the Gaussian trait (02, =
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Estimated variance components for the Gaussian trait (02, =
0.4; 0°c = 0.6; r, = 0.5). MT-AM-LT-6S analysis
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Jump to the Conclusions




Conclusions

* For the parameter combination tested,
heritability estimates for the Gaussian trait
were significantly biased (upwards) when rg
was hegative

» Genetic correlations between test-status and
the Gaussian trait were systematically
underestimated when rg was positive and
overestimated when rg was negative




Conclusions - in a nutshell

» The assumption of zero environmental
correlation between the culling criterion test-
status and a Gaussian trait may sometimes lead
to bad estimates of genetic parameters

* Works well if the true r¢is zero (or known)

e Informative prior values for rg would be
valuable




Future directions

» The next step in this study is to investigate
the consequences of including test-status in
the genetic evaluations of a Gaussian trait in
bivariate analysis when the genetic parameters
used are wrong

e Preliminary results show that inclusion of test
status generally enhances genetic progress
even if the genetic parameters used deviate
considerably from the true ones!

* Validation important in each casel
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