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Background
 Pre-selection or culling on an unobservable

criterion before testing is a common problem in 
horse breeding

 Culling on criterium correlated with tested
traits causes bias in estimation of genetic
parameters and genetic evaluations
(Robertson,1966,Meyer & Thompson,1984)



Background cont.
 Survival = Racing-status =Test-status = 0/1 

binary trait

 If record available on Gaussian trait then
test-status=1 else test-status=0

 Requires pedigree information on culled animals

 Estimated heritabilty of test-status moderate 
to high in many horse populations

 EBVs for test-status often important



Background cont.
 Árnason(1999) showed by simulations that 

bivariate genetic evaluations involving racing-
status and a Gaussian trait reduced selection
bias, increased accuracy, and increased genetic
response when true genetic parameters were
available

 The procedure was validated by method R in 
Swedish standardbred trotters (SST)

 Racing-status has been included in MT-AM-
BLUP for genetic evaluations of SST since
1995



Background cont.
 Genetic and environmental correlations

between test-status and the Gaussian
performance traits are not readily estimable

 Genetic covariance estimable if environmental
covariance is constrained to predifined value

 Expected environmental covariance ? 



Objective
 To study the consequences of assuming zero
environmental covariances between a binary
test-status and a Gaussian trait on the 
estimates of genetic parameters in culled
data, when the true covariances deviates from 
zero, using REML and Gibbs sampler methods



Simulated data 
 Base population: random 25 males 500 females

= 525 animals
 3 generations random mating 500 females and 

25 males per generation = 1575 animals. No 
phenotypes

 5 generations: Selection on phenotypic records
(mass selection across generations): 500 
females and 25 males selected per generation 
producing 1500 ofspring per generation = 7500 
records

 Pedigree list=9600 animals 



Simulation procedure
 True genetic parameters:  h2

1 =   h2
2 = 0.4; 

rA=0.5;  rE=0.0; 0.5; -0.5

 BV=a=0.5as +  0.5ad + m (Mendelian sampling 
term)

 m=√(0.5 c)CG z;   c=(1-0.5(Fs + FD)); VG=CGC’G; 
z=bivarate random sampled vector (0,I)

 P=Xb + a +Cez (underlying phenotypes)

 Fixed effects = generation effects

 Culling frequency 0.5 (σP1<0) and 0.8 (σP1<0.84)

 10 replicates



Model and methods for estimation
of genetic parameters

 DMU (Jensen & Madsen, 2008)

 Animal Model Average Information Restriced
Maximum Likelihood (AM-AI-REML)

 Multiple Trait Animal Model Linear Threshold
Markov Chain Monte Carlo Gibbs Sampler (MT-
AM-LT-MCMC-GS)



Results



Estimated variance components for the Gaussian trait (σ2
A = 

0.4; σ2
E = 0.6; rA = 0.5). ST-AM-AI-REML analysis

rE Var(A) (s.e.) Var(E) (s.e.) ĥ2 (s.e)

50% culling

0.0 0.383 (0.016) 0.588 (0.014) 0.394 (0.015)

0.5 0.338 (0.012) 0.509 (0.010) 0.399 (0.013)

-0.5 0.498 (0.020) 0.520 (0.016) 0.489 (0.018)

80% culling

0.0 0.403 (0.014) 0.565 (0.011) 0.416 (0.012)

0.5 0.334 (0.022) 0.469 (0.015) 0.414 (0.036)

-0.5 0.534 (0.029) 0.485 (0.018) 0.522 (0.021)
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Estimated variance components for the Gaussian trait (σ2
A = 

0.4; σ2
E = 0.6; rA = 0.5). MT-AM-LT-GS analysis

rE Var(A) 

(s.e.)

Var(E) 

(s.e.)

ĥ2 (s.e) ȓA (s.e)

50% culling

0.0 0.397 (0.016) 0.606 (0.013) 0.395 (0.014) 0.478 (0.021)

0.5 0.349 (0.012) 0.519 (0.009) 0.402 (0.013) 0.278 (0.040)

-0.5 0.534 (0.017) 0.540 (0.014) 0.497 (0.018) 0.621 (0.018)

80% culling

0.0 0.402 (0.019) 0.598 (0.010) 0.401 (0.014) 0.466 (0.048)

0.5 0.325 (0.019) 0.491 (0.013) 0.396 (0.020) 0.100 (0.041)

-0.5 0.610 (0.035) 0.505 (0.019) 0.544 (0.022) 0.715 (0.027)
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Jump to the Conclusions



Conclusions
 For the parameter combination tested, 

heritability estimates for the Gaussian trait
were significantly biased (upwards) when rE

was negative 

 Genetic correlations between test-status and 
the Gaussian trait were systematically
underestimated when rE was positive and 
overestimated when rE was negative 



Conclusions - in a nutshell
 The assumption of zero environmental

correlation between the culling criterion test-
status and a Gaussian trait may sometimes lead
to bad estimates of genetic parameters

 Works well if the true rE is zero (or known)

 Informative prior values for rE would be 
valuable



Future directions
 The next step in this study is to investigate

the consequences of including test-status in 
the genetic evaluations of a Gaussian trait in 
bivariate analysis when the genetic parameters 
used are wrong

 Preliminary results show that inclusion of test 
status generally enhances genetic progress 
even if the genetic parameters used deviate
considerably from the true ones!

 Validation important in each case!



Ευχαριστώ - Thank you


