Session 11, Presentation 2, Abstract no. 7573

Effects of dietary glycerol on glycerol kinase gene expression and gut microbiota in growing piglets

Papadomichelakis G., Zoidis E., Mountzouris K., Lippas T., Fegeros K.

Agricultural University of Athens Dept. of Nutritional Physiology & Feeding

- Alternative pig nutrient sources. What is the need?
- Glycerol as an alternative feedstuff-perspectives
- Usage limitations and the role of glycerol kinase (GK)
- Objectives of the present work
- Experimental design and traits of glycerol
- Results
- Conclusions
- Implications

- Pig feeding with **cereal**-based diets (\uparrow energy content)
- The turn towards biofuels globally → increased price of high energy feedstuffs:
 - a. reduced land availability (compete biofuel crops)
 b. increasing use of cereals (rich in starch) or sugar beet and molasses (rich in sugars) in bioethanol production
- Second generation technologies (from perennial crops) are limited
- Importance of evaluating the use of alternative nutrient sources for pigs

- Glycerol (biodiesel by-product) is a promising alternative nutrient source:
 - high energy content (14.4 MJ DE/kg)
 - sweet taste \rightarrow high **palatability**
 - readily absorbed (>90%)
 - does not compete other feedstuffs
 - significant lowering of glycerol prices is expected
 - enormous surplus will become available (100 kg of fats or oils contain 10 kg glycerol + 90 kg fatty acids)
- Limitations of dietary glycerol addition??

- Current limitations are defined by the association of high dietary glycerol levels with low animal performance (body weight gain etc.)
- Role of glycerol kinase (GK)??

- The role of GK may supply with more precise info about dietary addition levels and glycerol utilization
- Additionally, there are no data on the effect of glycerol on gut microbiota \rightarrow overall nutrient digestibility

Objectives

To study the effects of adding crude glycerol at

7.5 and 15.0 % (at the expense of maize mainly) in piglet diets, on:

- Glycerol kinase gene expression in liver tissue homogenates
- Piglet performance traits (feed intake, average daily gain, FCR) and
- Selected constituents of gut microbiota monitored at the ileal and caecal level

- 18 weaned Large White × Pietrain piglets (aged 30 d, average
 BW= 8 kg)
- individually kept in metabolism crates for 42 days
- allotted into 3 treatments Control (C), G1 and G2

Materials and Methods

Main ingredients and chemical composition of diets and crude glycerol (%)

	Treatment			
	С	G1	G2	
Maize	61.0	47.8	38.5	
Soybean meal	30.0	31.0	32.9	
Wheat bran	4.9	10.0	10.0	
Crude glycerol	-	7.5	15.0	Glycerol
Dry matter	89.4	90.0	90.7	97.7
Digestible energy (MJ/kg)	13.5	13.5	13.6	14.4
Crude protein	19.5	19.5	19.5	-
Ether extract	3.0	2.7	2.4	0.5
Ash	6.3	6.1	6.1	5.4
Na	0.2	0.2	0.3	2.1

- Feed intake, weight gain and FCR were determined weekly
- At the end of the growing period (72 days of age) pigs were euthanatized
 - liver was blast frozen for further RNA isolation and GK gene expression analysis (calculated as GK/β-actin ratio)
 - ileum and caecum were blast frozen and subsequently assessed for selected constituents of microbiota composition (expressed as log CFU/g wet digesta)
- Linear and quadratic effects of dietary glycerol were studied by using polynomial contrasts (SPSS v.17.0)

Results

Feed intake, body weight (BW) gain and feed conversion ratio (FCR) for the whole growing period (30-72 days of age)

	Glycerol addition level (%)				2 م	2 D
(treatment)	0 (C)	7.5 (G1)	15.0 (G2)	SEIVI	₽ _{Linear} ¯	₽ Quadratic [−]
Feed intake (kg)	40.1	42.3	38.7	3.73	0.719	0.379
		+5.5%	-4.6%			
BW gain (kg)	22.8	25.8	23.6	2.04	0.694	0.163
	>	+10%	+4%			
FCR (kg/kg) 1.77	1.77	1.64	1.63	0.071	0.075	0.335
		-7%	-8%			

¹ SEM, standard error of means

² P-values of polynomial contrasts

Results

GK gene expression and blood plasma glycerol levels at the end of the growing period (72 days of age)

Dietary glycerol addition level (%)

Gut microbiota composition (log CFU/g wet digesta) at the end of the growing period (72 days of age)

- No effects of dietary glycerol addition on ileal microbiota
- However, in caecum:

	Glycerol addition level (%)			CEN11	2 ח	2 ח
(treatment)	0 (C)	7.5 (G1)	15.0 (G2)	SEIVI	P _{Linear}	₽ Quadratic
Clostridium	7.29	7.17	6.54	0.341	0.043	0.405
Lactobacillus	7.15	6.76	6.41	0.336	0.044	0.912
Gram+ cocci	5.40	5.22	4.49	0.491	0.082	0.525

¹ SEM, standard error of means

² P-values of polynomial contrasts

- Increasing dietary glycerol levels up to 15% did not have any negative impact on performances and health status
 - reconfirmation with higher *n* of piglets
- High absorption of dietary glycerol
 - high variation in plasma levels (due to feeding time)
- Increasing GK gene expression with dietary glycerol
 - increased capacity to activate glycerol for utilization
- No adverse impact on gut microbiota
 - further investigation

• Methanol residues (<0.5%) \rightarrow toxicity

- limiting factor for dietary levels

• High viscosity (<18°C) \rightarrow problems during mixing

- water addition for easy handling

• High sodium (Na) or potassium (K) content

- Na/K ratio maintenance

- Other residues (e.g. FA) \rightarrow final product quality
 - amounts depend on biodiesel process efficiency
 - types depend on the oil or fat used

The present work (Project no. 20.0023) was funded by

the Research Committee of the Agricultural University of

Athens

Thank you for your

attention

Results

	Glycerol add	6)	G2/G1 ratio	
(treatment)	0 (C)	7.5 (G1)	15.0 (G2)	2.00
Glycerol intake (kg)		3.17	5.81	1.83
Plasma glycerol (mg/dl)		304	443	1.46
GK expression		0.99	1.82	1.84