Effect of a Chelated Source of Copper, MINTREX[®] Cu, on Growth Performance and Tissue Copper Concentration In Weaned Piglets

Parker, D.S.¹, Gracia, M.I.², Harrell, R.J.³, Richards³, J.D. and Stebbens, H. R.⁴

¹ Novus Europe, Avenue Marcel Thiry 200, B-1200, Brussels, Belgium ²Imasde Agroalimentaria, Madrid, Spain ³Novus International Inc. St Charles, MO, USA ⁴Novus UK LImited

The Role of Copper in Pig Nutrition

- Copper (Cu) plays a key role in the:
 - activation of enzymes involved in metabolism
 - transport of iron for haemoglobin synthesis
 - Activation of the enzyme, thiol oxidase, responsible for the formation of disulphide bonds between cysteine residues in keratin
 - Control of microbial activity in the gastrointestinal tract.

Organic Trace Minerals – Different Structures Different Properties

Metal Amino Acid Chelates

Specific Metal Amino Acid Complexes

Metal Proteinates

Metal Amino Acid Complexes

Metal Polysaccharide Complexes

MINTREX® has a stable structure and a unique ligand

- One atom of mineral bonded to two molecule of HMTBa
 Ligand = hydroxy analogue of methionine
- Coordinate covalent bonds
 - Higher stability in the gut, higher mineral bioavailability
- Residual benefit of the ligand
 - Methionine source

Improved Zn bioavailability from MINTREX Zn has bee measured using metallothionein (MT) mRNA expression in gut tissues

- Metallothionein (MT) proteins bind to Zn and other metals
- One MT protein can bind up to 7 cations, such as Zn
- Increased uptake of Zn by the cell stimulates MT synthesis
- mRNA level in the cell is a measure of protein production

MT mRNA assay in duodenal mucosa of broilers demonstrates superior bio-availability of Zn from MINTREX[®]

Objectives

To investigate the effect of MINTREX® Cu on

• Growth Performance

- Daily liveweight gain, feed intake and feed conversion ratio between 26 and 68 days of age
- Copper Bioavailability
 - Mineral concentration in body tissues

in weaned piglets

Study Design: Treatments

Dietary Treatments

			Adde	d Cu Level	(mg/kg)
ITM Cont	rol NRC			6	
ITM Cont	rol at EU M	ax		150	
MINTREX	Cu at EU N	lax		150	
Tir	neline: Pigl	ets on trial	from 26 to	68 days of	age
Week 1	Week 2	Week 3	Week 4	Week 5	Week 6
Prestar	ter Feed		Starte	er Feed	
					N
					INT

Analyzed feed Cu content (mg/kg)

	Prestarte	er 26-40d		Sta	rter 40-68d		
	T1 ITM Control	T2 ITM Cu 150	T3 Mintrex Cu 150	T1 ITM Control	T2 ITM Cu 150	T3 Mintrex Cu 150	
Added Cu	6	150	150	5	150	50	
Analyzed Cu	15	149	169	11	145	160	

Study Design: Experimental Design

Table x: Number of Piglets, Pens and Replicates

No. of Treatments	3
Replicates (Pens) per treatment	8
Total Number of replicates (pens)	40
Piglets per Replicate	10
Piglets per treatment	80
Total Number of Piglets	240

Study Design: Observations and Measurements

Observations and Measurements

- Feed Intake
- Bodyweights
- Weight Gains
- Feed Efficiency

Day 0, 14 and 42 on trial

- Culling
- Mortality
- Health

Daily Records including probable causes of any culling, illness or deaths

Effect of Treatment on Bodyweight and Mortality (26 – 68 days of Age)

Trootmont	Bodyweight (kg)			Mortality (%)	
meatment	26 days of Age	40 days of Age	68 days of Age	26 – 40 d	26 – 68 d
ITM control	7.36	10.44 ^b	22.07 ^b	0.00	5.00
ITM at EU Maximum	7.36	10.54 ^b	22.07 ^b	1.25	3.75
MINTREX [®] Cu EU Max	7.35	11.27 ^a	23.40 ^a	1.25	3.75
SEM (n=8)		0.144	0.416	1.104	2.430
Ρ		0.0001	<0.0001	0.6376	0.3132
Significance of Contrasts					
ITM vs MINTREX [®] , EU Max		0.0012	0.0314	1.0000	1.0000

SEM: Standard Error of the Mean P: Probability. Different letters (a-d) in the same column indicate significant differences (P<0.05)

Effect of Treatment on Zootechnical Performance (26 – 68 days of age)

Treatment	Average Daily Liveweight Gain (g/d)	Average Daily Feed Intake (g/d)	Food Conversion ratio (g feed/g gain)		
ITM Control, NRC	346.3 ^b	534.0 ^{ab}	1.54 ^b		
ITM Control at EU Maximum	346.4 ^b	510.0 ^b	1.47 ^{ab}		
MINTREX [®] Cu EU Maximum	377.6 ª	544.0 ^a	1.44 ª		
SEM (n=8)	9.77	10.80	0.035		
Ρ	<0.0001	<0.0001	0.0419		
Significance of Contrasts					
ITM vs MINTREX [®] , EU Max	0.0318	0.0340	0.5015		

SEM: Standard Error of the Mean P: Probability. Different letters (a-d) in the same column indicate significant differences (P<0.05)

Results: Copper Deposition

Effect of Treatment on Tissue Copper Deposition

Summary of animal performance

- Use of MINTREX Cu significantly increased body weight of piglets at 40 and 68 days of age
- MINTREX use resulted in a significant incease in feed intake over the 42 day experimental period
- Liver copper level at 68 days of age was significantly increased by MINTREX use

Conclusions

- Use of MINTREX Cu in the diets of weaned piglets improved animal performance when compared to an inorganic source
- Increased bioavailability of Cu from the chelate source is demonstrated by higher concentrations of Cu in the liver
- Improved bioavailability provides an opportunity to reduce diet inclusion rates while maintaining performance in young pigs

