Session 11, Presentation 3, Abstract no. 7579

Preliminary study on the effects of crude glycerol on the intramuscular fatty acid composition in growing pigs

Lippas T., Papadomichelakis G., Zoidis E., Mountzouris K., Fegeros K.

Agricultural University of Athens Dept. of Nutritional Physiology & Feeding

- **Biodiesel** = mixture of fatty acid methylesters (FAMEs) from vegetable oils or animal fats
- **Glycerol** is a by-product of biodiesel production

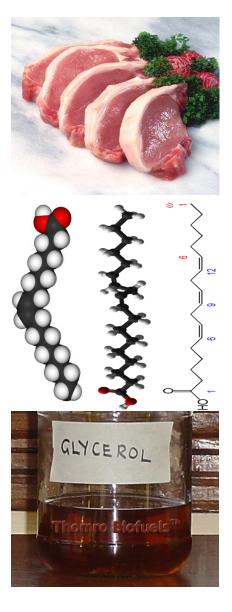
a. accounts for the 10% of the total product

b. wide range of use (pharmaceuticals, cosmetics)

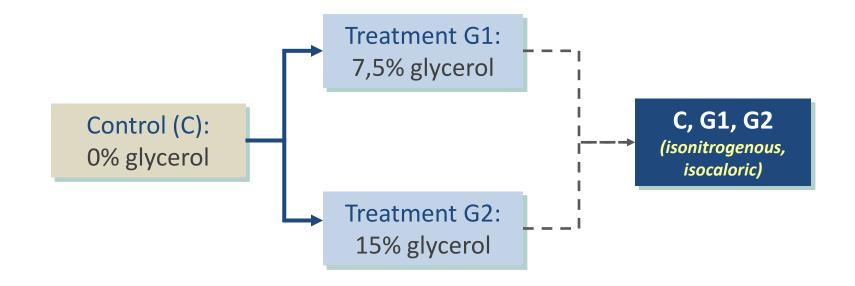
c. as crude by-product in animal feeding (energy source)

- Indications of influence of glycerol on meat quality (drip loss, ultimate pH)
- No clear consensus on the effect of glycerol on meat FA

- Differences between studies on the effects of glycerol on meat FA have been attributed to:
 - the amount and profile of FA residues in crude glycerol or
 - the reduction of other feedstuffs due to glycerol addition
- which potentially modify the dietary FA profile
- Amount and profile of FA in glycerol may depend on:
 - efficiency of industrial process to extract the FAMEs
 - FA of the oil or fat used


Objective

To test:


the hypothesis that crude glycerol addition (at the expense of maize mainly) at 7.5 and 15 % in piglet diets

has an effect on the intramuscular fatty acid
 composition, due to

- FA residues

- 18 weaned Large White × Pietrain piglets (aged 30 d, average
 BW= 8 kg)
- allotted in 3 treatments Control (C), G1 and G2

Materials and Methods

Main ingredients and chemical composition of diets and crude glycerol (%)

	Treatment			
	С	G1	G2	-
Maize	61.0	47.8	38.5	-
Soybean meal	30.0	31.0	32.9	
Wheat bran	4.9	10.0	10.0	
Crude glycerol	-	7.5	15.0	Glycerol
Dry matter	89.4	90.0	90.7	97.7
Digestible energy (MJ/kg)	13.5	13.5	13.6	14,4
Crude protein	19.5	19.5	19.5	-
Ether extract	3.0	2.8	2.5	0.52

Crude glycerol from the processing of a mixture of vegetable oils

(palm, soybean, cotton and rape seed) at random proportions

Materials and Methods

• Glycerol: 0.5 lt from each tank (10 tanks) \rightarrow pooled in 0.5 lt \rightarrow 8 replicates (1 g) were analyzed for FA

• Diets: 4 replicates (1 g) of each diet were analyzed for FA

Fatty acid		Diet		
(% of total FA)	С	G1	G2	Glycerol
C16:0	14.6	14.9	14.6	13.0
C18:0	2.6	2.6	2.6	2.2
C18:1 <i>-cis9</i>	21.8	21.0	20.9	42.6
C18:2 <i>n-</i> 6	53.8	54.2	54.4	31.6
C18:3 <i>n</i> -3	3.7	3.9	4.2	5.9
Others ¹	3.5	3.4	3.3	4.7

¹ C14:0, C16:1, C18:1-cis11, C20:0, C20:1, C20:2

- At the end of the growing period (72 days of age) pigs were euthanatized
 - a chop of loin muscle was excised, vacuum packed and kept at -20°C
 - Direct FAME synthesis for all diet, glycerol and muscle samples. GC analysis on polar column (HP-88). Identification and quantification using FAME mix and C13:0 as internal std, respectively
- Linear and quadratic effects of dietary glycerol were studied by using polynomial contrasts (SPSS v.17.0)

• Glycerol FA residues reflected the FA contained in the vegetable

oils used for the biofuel production

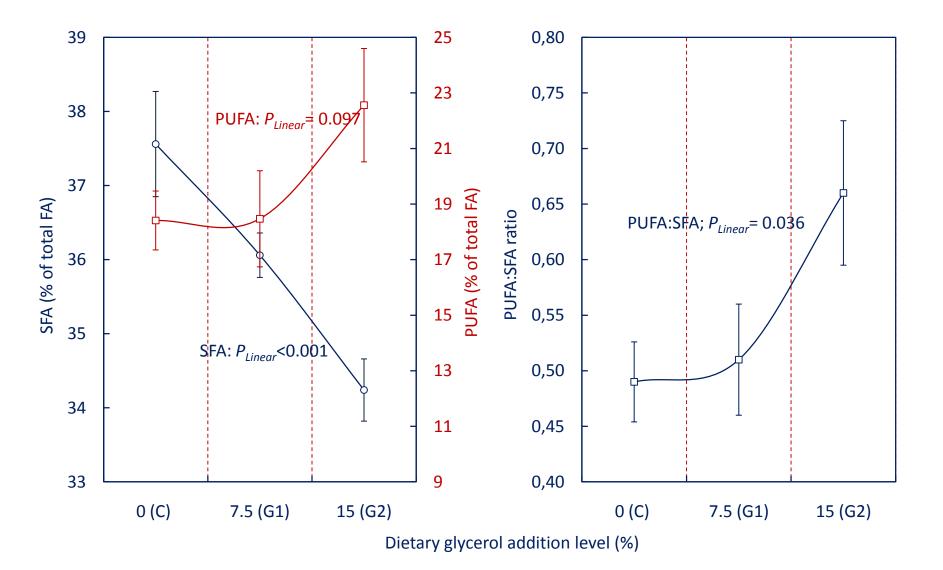
Fatty acid (% total FA)	Vegetable oil ¹				
	Palm	Rapeseed	Cotton seed	Soybean	Glycerol ²
C16:0	43.8	5.1	24.2	10.8	13.0
C18:0	4.4	1.7	2.3	3.9	2.2
C18:1 <i>-cis9</i>	39.1	60.1	17.4	23.9	42.6
C18:2 <i>n-</i> 6	10.2	21.5	53.2	52.1	31.6
C18:3 <i>n</i> -3	0.3	9.9	0.2	7.8	5.9

¹ Adapted from Dubois et al. (2007)

² As analyzed

Results

Intramuscular total weights of FA (mg FA/100g wet tissue) and FA composition (% of total FA)


	Glycerol addition level (%)			SEM ¹	2 ח
(treatment)	0 (C)	7.5 (G1)	15.0 (G2)	JEIVI-	P _{Linear} ²
Total FA	1076	1196	967	110.8	0.483
C14:0	1.16	0.99	0.83	0.095	0.003
C16:0	24.34	22.59	20.96	0.724	<0.001
C18:2 <i>n</i> -6	13.48	13.47	15.63	1.528	0.180
C18:3 <i>n</i> -3	0.42	0.42	0.58	0.052	0.007
C20:3 <i>n</i> -6	0.38	0.39	0.59	0.092	0.037
C20:5 <i>n</i> -3	0.08	0.06	0.18	0.034	0.017
C22:6n-3	0.30	0.33	0.50	0.045	0.009

¹ SEM, standard error of means

² P-values of polynomial contrasts

Results

Intramuscular SFA, PUFA (% of total FA) and PUFA:SFA ratio

- Modified intramuscular FA profile can be attributed to dietary FA changes brought about by glycerol addition (to some extent)
 - PUFA increasing trend due to dietary PUFA increase
 - SFA decrease likely indicates the conversion of glycerol to glucose rather than to FA
- The effect of glycerol is expected to vary due to the:

origin of crude glycerol (saturation degree of FA in the vegetable oil and/or animal fat), level of addition, and regime of supplementation

The present work (Project no. 20.0023) was funded by

the Research Committee of the Agricultural University of

Athens

Thank you for your

attention