61st Annual Meeting of EAAP Crete Island, Greece, August 2010 Session 07, Poster no. 11, Abstract no. 7453

S

Ð

+--

 \mathbf{O}

t u r e

S D

 \cup

Ο

Using odd and branched-chain fatty acids to investigate dietary induced changes in the caecum of rabbits

Table 1

G. Papadomichelakis*, K.C. Mountzouris, N. Paraskevakis and K. Fegeros

Introduction

• Odd-numbered (ONFA) and branched-chain (BCFA) fatty acids (OBCFA) are major components of bacterial membrane lipids and vary among microbial species.

Contribution of individual odd (ONFA) and branched-chain (BCFA) FA (as % OBCFA) in the OBCFA pattern and total OBCFA (% of total FA)

	DF		SO			Significance ⁴		
	LDF	HDF	0	20	KMSE	DF	SO	DFxSO
i14:0	13.5	13.0	13.6	12.9	0.53	ns	ns	ns
ai15:0	27.7	27.1	26.2	28.5	1.10	ns	*	*
15:0	25.8	28.8	27.2	27.5	0.83	***	ns	**
i16:0	22.6	21.9	22.8	21.7	0.83	ns	ns	ns
ai17:0	2.4	2.3	2.3	2.4	0.22	ns	ns	ns
17:0	8.0	7.0	7.9	7.0	0.26	**	**	ns
	33.8	35.8	35.1	34.5	0.83	*	ns	***
BCFA ²	66.2	64.2	64.9	65.5	0.83	*	ns	***
OBCFA ³	12.8	12.2	13.3	11.7	0.47	ns	***	ns

- Changes in rumen OBCFA pattern have been used to describe dietary effects on ruminal bacteria.
- Data on caecal OBCFA is scarce in rabbits

Objective

To investigate the interactions between nutrition and potential changes in caecal bacteria populations using OBCFA, in rabbits.

Materials and Methods

- 4 Diets: Low (165 g/kg) vs. High (240 g/kg) digestible fibre (DF) content, with soybean oil (SO) addition (20) g/kg) or not (2x2 design); LDF0_{n=11}, LDF20_{n=12}, $HDFO_{n=12}, HDF2O_{n=12}.$
- Fatty acid (FA) determination in freeze-dried caecal contents (at 77 days of age), and feed samples.
- Data analysis: GLM procedures (two-way ANOVA) and principal component analysis (PCA).

 $^{1}ONFA$, sum of 15:0+17:0 (% OBCFA); $^{2}BCFA$, sum of i14:0+ai15:0+i16:0+ai17:0 (%OBCFA); ³OBCFA, sum of odd and branched-chain FA (% of total FA); ⁴ns, P>0.05; *, P<0.05; **P<0.01; ***, P<0.001

Figure 2

DFxSO interactions on OBCFA pattern (ONFA and BCFA, as %OBCFA) a, b and x, y= differences (P<0.05) between diets for ONFA and BCFA, respectively

- Evaluation of the results by comparison to literature

