# Equid milk: Chemical and Physico-chemical properties







P.F. Fox & T. Uniacke School of Food & Nutritional Sciences, University College Cork, Ireland. pff@ucc.ie



### THE HORSE

Among the most important domesticated animals, found worldwide.

Has played a major role in the development of human civilization.

- Military
- Transport
- Agriculture

In developed countries today -

- Mainly sporting activities (various)
- In some countries

Meat

Milk

### DAIRY HORSES

- Important in Mongolia, Central Asian Steppes, Russia also: France, Italy, Hungary, Netherlands, etc.
- Number of dairy horses and amount of mares' milk produced not known precisely.
- Milk from 230,000 mares used in Russia for Koumiss
- ca 1 million kg equine milk produced in Europe (exl Russia) and ca 10 million kg in Asia

#### Dairy Horse Farm in Netherlands, Orchids, Zealand



## GROSS COMPOSITION (%) OF EQUID MILK

|       | Total<br>Solids | Fat | Protein | Lactose | Ash  |
|-------|-----------------|-----|---------|---------|------|
| Horse | 10.4            | 1.4 | 1.82    | 6.74    | 0.47 |
| Ass   | 10.8            | 1.8 | 1.74    | 5.87    | 0.44 |
| Zebra | 11.3            | 2.2 | 1.63    | 7.0     | 0.38 |
| Cow   | 12.7            | 3.6 | 3.2     | 4.8     | 0.8  |
| Human | 12.3            | 3.6 | 1.4     | 6.7     | 0.3  |

Features: low fat, low protein, high lactose

## Equid Milk

- Milk of all equids quite similar
- Equine milk fairly well characterized
- Quite a lot of information on asinine milk
- Few data on zebra milk difficult to handle

#### MILK SUGARS

Lactose principal sugar in milk of most eutherians but all contains oligosaccharides. OSs high concentration in human milk (> 15 g/L; > 130 oligosaccharides)also high in elephant and bear milk. Monotremes and marsupials: very little lactose, mainly oligosaccharides Equine milk, low level of OSs Much interest in significance of OSs

#### Fatty Acid Composition of Equine Milk

| Fatty acid        | % w/w*    |
|-------------------|-----------|
| C <sub>4:0</sub>  | < 1       |
| C <sub>6:0</sub>  | < 1.5     |
| C <sub>8:0</sub>  | 2.0-6.1   |
| C <sub>10:0</sub> | 2.3-16.7  |
| C <sub>12:0</sub> | 3.8-14.6  |
| C <sub>14:0</sub> | 5.3-10.7  |
| C <sub>14:1</sub> | 0.1-2.6   |
| C <sub>16:0</sub> | 12.4-23.8 |
| C <sub>16:1</sub> | 2.2-9.7   |
| C <sub>18:0</sub> | 0.0-3.0   |
| C <sub>18:1</sub> | 9.4-28.2  |
| C <sub>18:2</sub> | 3.6-17.9  |
| C <sub>18:3</sub> | 1.5-26.2  |

Notable features: Very high C10:0 and C12:0 High PUFA

Ratio of ω:6:ω:3 is 1.16:1 in asinine and 1.26:1 in equine milk – optimum for reduction of risk of cardiovascular disease & some cancers (bovine milk ~ 2-3:1)

\*(extreme variations from 18 publications)

## FAT GLOBULES

- <1 5 µm in diameter;
- mean 2.5-3 µm
- Slightly smaller than bovine milk fat globules
- No creaming (no cryoglobulin)

## Human and Equine Milk Fat Globules

Filamentous surface structure High MW glycoproteins  $(mucins) \rightarrow shed on heating$ Facilitate fat absorption  $\rightarrow$  adherence to gut mucus retards globule movement  $\rightarrow$  inactivation of milk lipase

#### **EXISTING SLIDES OF EQUINE MFG**

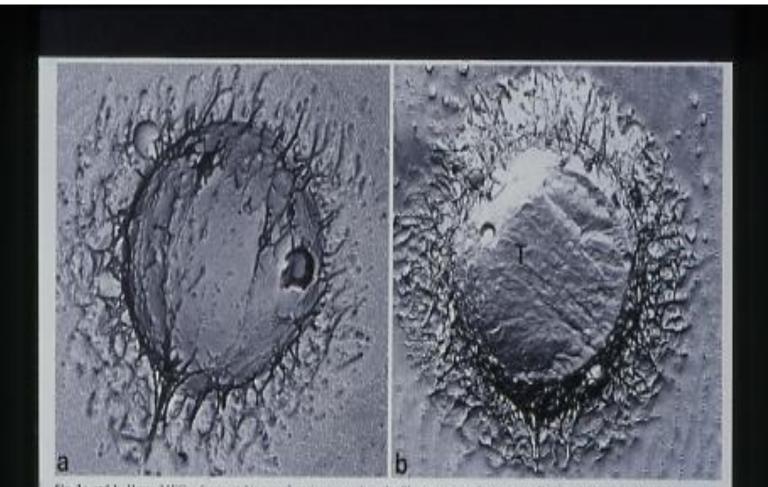



Fig. Ja and b. Horse MFGs: freeze etching preparations revealing the filamentous surface cost: a ficetary shadowing: b unidirectional shadowing: Part of the globale has been fractured off this exposing the trighceride cure (7), a × 24300, b 18600

#### TYPES OF PROTEINS (g/kg) IN EQUINE MILK

|                | Human | Mare  | Cow   |  |
|----------------|-------|-------|-------|--|
| Total Protein  | 14.2  | 21.4  | 32.5  |  |
| Casein         | 3.7   | 10.7  | 25.1  |  |
| Whey Proteins  | 7.6   | 8.3   | 5.7   |  |
| Cas: NCN       | 1:2.0 | 1:0.8 | 1:0.2 |  |
| NPN            | 20.4  | 11.2  | 5.2   |  |
| β-Lg (% of WP) | 0     | 30.7  | 53.6  |  |
| α-La (% of WP) | 42.4  | 28.6  | 20.1  |  |
| BSA (% of WP)  | 7.7   | 4.5   | 6.2   |  |
| Ig (% of WP)   | 18.2  | 19.8  | 11.8  |  |
| Lf             | 30.3  | 9.9   | 8.4   |  |
| Lysozyme       | 1.7   | 6.6   | Tr    |  |

## EQUINE $\alpha$ - LACTALBUMIN

Equine milk: approx equal amounts of  $\alpha$ -La and  $\beta$ -Lg Equine and asinine  $\alpha$ -La- generally similar to other  $\alpha$ -La's Small molecule: 123 AA residues; MW: 14,215 Da 4 intra-molecular disulphides

Binds Ca<sup>2+</sup> in a positive loop

- Genetic variants, A (principal), B, C, differ in amino acid profile
- 2 isoforms of α-La A differing in degree of amidation or glycosylation

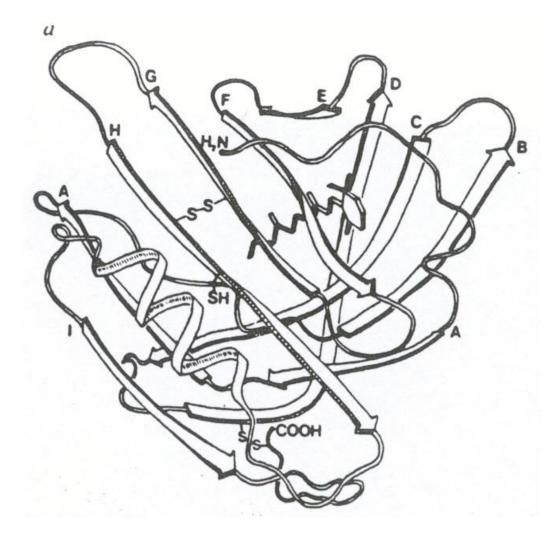
Amino acid sequence known (Giradet *et al* IDJ 14 207-217 (2004).

## $\alpha$ -Lactalbumin

- Biological function:
- Modifies specificity of UDP galactosyl transferase in lactose synthesis
- Makes it highly specific for glucose
- Reduces Km 1000 fold
- Concentration of lactose in milk proportional to concentration of  $\alpha\text{-La}$ 
  - both absent from milk of some marine mammals

## $\beta$ -Lactoglobulin

• Occurs in the milk of most species


 $\rightarrow$  exceptions - human, most primates, rodents

- β-Lg of some species has a sulphydryl group, others do not
- Some dimerize, others do not
- Dimerization and –SH not related

## Bovine $\beta$ -Lactoglobulin

- Highly structured small molecule
- 162 residues
- 18.3 kDa
- 2 intra-molecular disulphides
- 1 sulphydryl group
- Amino acid sequence known
- Spherical, 0.36 nm in diameter
- Quaternary structure:
- Monomeric <pH 3.5 > 7.5
- Dimeric pH 5.5-7.5
- Octameric pH 3.5-5.5

#### Secondary and Tertiary Structures of Bovine β-Lactoglobulin



## $\beta$ -Lactoglobulin

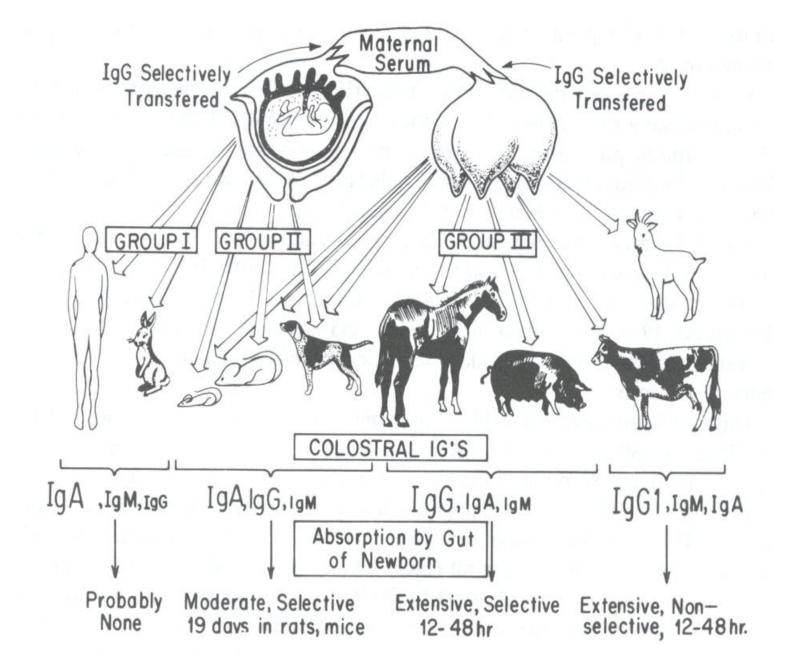
- Biological function
  - Bind hydrophobic molecules in a hydrophobic pocket
  - Two possible functions:
  - Binds and protects retinol against oxidation;
    - exchanges with a retinol-binding protein in intestine
    - Questions:
    - Where does exchange of retinol from fat globule to  $\beta$ -Lg occur?
  - Why do humans and rodents not have  $\beta$ -Lg

> Binds fatty acids  $\rightarrow$  promotes lipase activity

## $\beta$ -Lactoglobulin

- Member of Lipocalin family 14 members
- Function:
- Various binding functions:
- Retinol Prostaglandins
  Eatty acids Bilivordin
  - Fatty acids
  - Odorants
  - Steroids

Biliverdin Histamine


• Biochim. Biophys. Acta (2000). Special Issue

## Equine β-Lactoglobulin

- Two  $\beta$ -Lg's in equine milk, I and II
- β-Lg I, 162 AA
- $\beta$ -Lg II, 163 AA, 1 extra AA at 117
- Both I and II are monomeric
- (i.e., no pH-dependent dimerization)
- Both I and II have 2 intra-molecular
- disulphide bonds
- No sulphydryl

#### Equine Immunoglobulins (mg/mL)

| Туре | Human     | Equine    | Во   | Bovine    |  |
|------|-----------|-----------|------|-----------|--|
|      | Colostrum | Colostrum | Milk | Colostrum |  |
| lgG  | 0.43      | 113.4     | 4.39 | 33-212    |  |
| IgA  | 17.4      | 10.7      | 0.48 | 3.5       |  |
| IgM  | 1.6       | 5.4       | 0.03 | 8.7       |  |



## Lactoferrin

- Non-haem iron-binding protein
- Present in milk, saliva, tears, bile, etc.
- Like seroferrin and ovoferrin
- MW: ~ 78,000 Da
- Primary and higher structures known
- Biological function:

antibacterial, iron carrier, etc.

Equine milk relatively rich in Lf – 0.2-2 g/kg

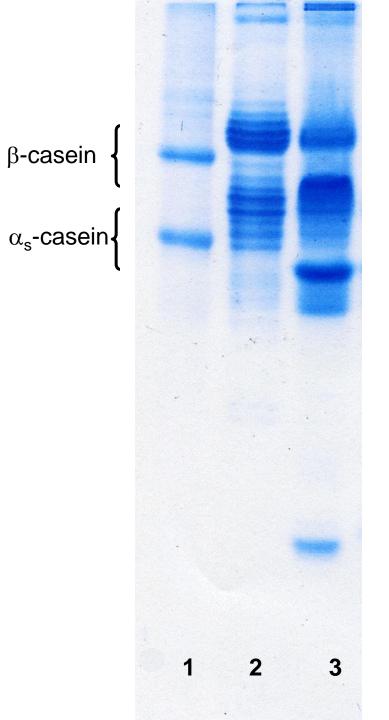
i.e., 10x higher than bovine milk, slightly lower than human milk

(Doreau & Martin-Rosset, EDS)

## Lysozyme (EC 3.1.2.17)

- Bactericidal
- 129 AA residues; MW ~14 kDa
- pl ~ 9
- Highly homologous to  $\alpha$ -La gene duplication?
- Human and equine milk 3,000 and 6,000 more lysozyme than bovine milk
- Equine milk: ~ 800 mg Lys / L; 3% of total protein, ~7% of WP
- Human milk: ~500 mg Lys / L; 4% of total protein
- Equine milk is very shelf-stable due to lysozyme?
- α-La binds and is stabilized by Ca<sup>2+;</sup> lysozyme no - except equine lysozyme

## Indigenous Enzymes in Equine Milk

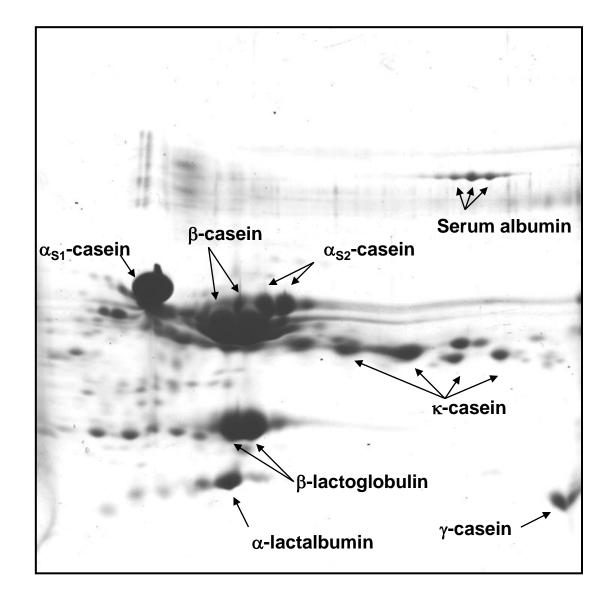

- About 70 enzymes reported in bovine milk (see Fox & Kelly, 2006a,b)
- Probably similar profile in equine milk  $\rightarrow$  few reports
- Lysozyme: well studied
- Others:
  - Lactoperoxidase, catalase, amylase, lipoprotein lipase, plasmin, lactic dehydrogenase, malic dehydrogenase
  - Reported not to contain xanthine oxidoreductase unlikely – export of fat globules
  - No reports on alkaline phosphatase, acid phosphatase, ribonuclase, N-acetlyglucosaminidase

## **Equine Caseins**

- Very low casein content: ~1%
- About equal amounts of  $\alpha_s$  and  $\beta$ -caseins
- Both  $\alpha_s$  and  $\beta$ -caseins multiphosphorylated isoforms 6 or 7 PO<sub>4</sub> residues per mol
- Very little κ-casein
- Amino acid sequence of  $\alpha$ -,  $\beta$  and  $\kappa$  known

#### Protein solubility Vs pH






Bovine Caseinate
 Equine Caseinate
 Equine milk

#### Our search for equine $\kappa$ -casein

- 1. 2D electrophoresis, pH 4-7 and pH 3-10 followed by nano-LC MS-MS on ~ 64 spots from control and renneted equine milk no  $\kappa$ -casein identified
- C18 RP-HPLC of 2% TCA fractions of renneted samples over 24 h no CMP identified
- 3. C4 RP-HPLC of equine milk on-going
- 4. SDS gel electrophoresis with PAS glycosylated protein present
- 5. Centrifugation of equine milk at increasing speeds followed by SDS PAGE no  $\kappa$ -casein evident

2DE of bovine milk under reducing conditions (strip 7 cm, pH 4-7, acrylamide gradient 12-18%)



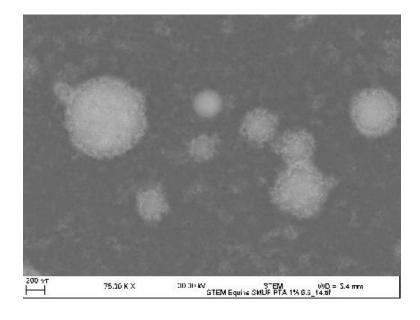
# 6 90 0 33 3 0 1 12 (13)

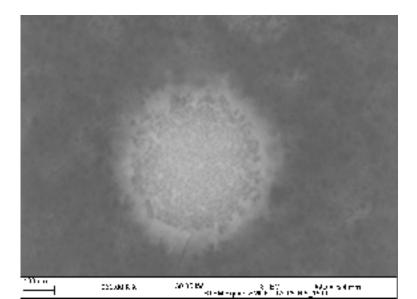
#### 2D Electrophoresis of Equine Milk – spots analysed by nanoLC-MS-MS

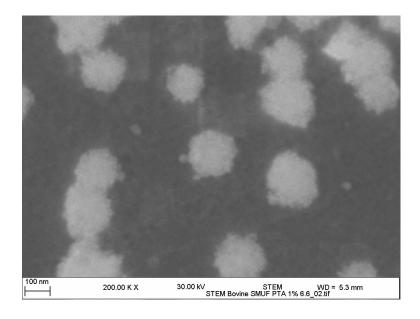
**Spots** 1-4, α-La 5-7, β-Lg 10-13, β-Cn 16-19, β-Cn 20-28,  $\alpha_{s1}$ -Cn 30,  $\alpha_{s1}$ -Cn 31, IgG 32,  $\alpha_{s1}$ -Cn

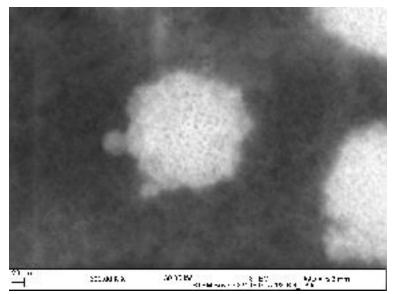
pH 4-7 strips

#### Equine casein micelles

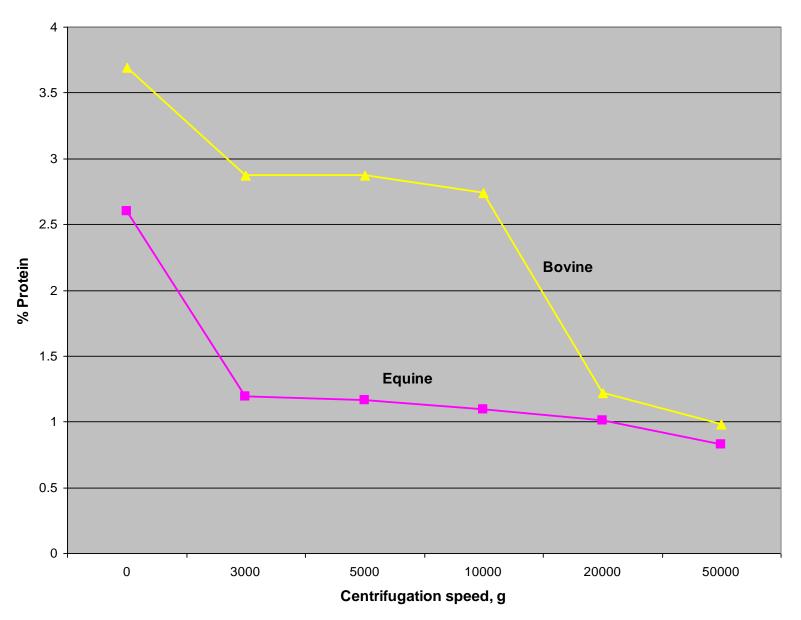

Equine casein occurs as micelles


Generally similar to bovine casein micelles but slightly larger: average diameter of 275nm, vs 150nm


Zeta potential; lower than bovine at -10mV vs -20mV

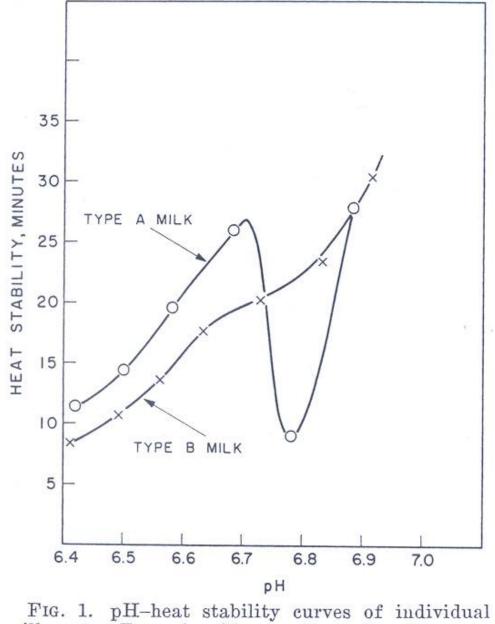

Ratio of micellar Ca:micellar inorganic phosphorus of 2.0 compared to 3.9 in bovine micelles

#### **STEM of equine and bovine micelles**








#### % Protein in supernatant vs centrifugation speed for equine and bovine milks



# Stability of Equine Micelles

- Heat
- Acidification
- Renneting
- Ethanol
- Urea
- Ca-chelators
- Low temperature

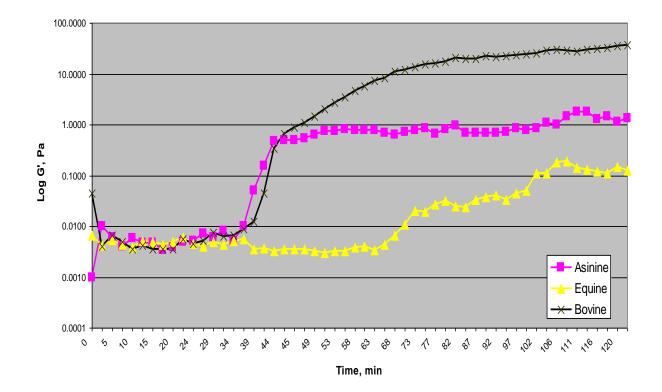


milks. •—Type A milk; ×—Type B milk.

- Heat Stability
- heat stability very low (< 2 min at 140°C)</li>

1600 1400 1200 1000 Time, s Unconcentrated, unheated 800 Unconcentrated, pre-heated Concentrated, unheated 600 400 200 0 6.5 6.6 6.7 6.8 6.9 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 6.3 6.4 7 pН

Heat Coagulation Time-pH profile of skimmed raw equine milk

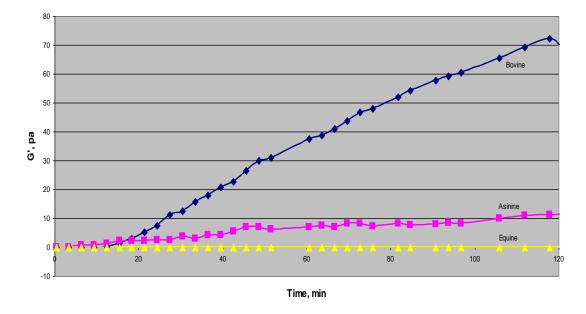

### Type A HCT-pH profile

High [Ca<sup>2+</sup>] may be responsible, i.e 2.6mM

Very protracted clotting with pre-heated equine milk

### Acid-induced coagulation






At pH 4.2 approx. precipitate forms but no gel, increasing casein content or slowing rate of acidification has little effect

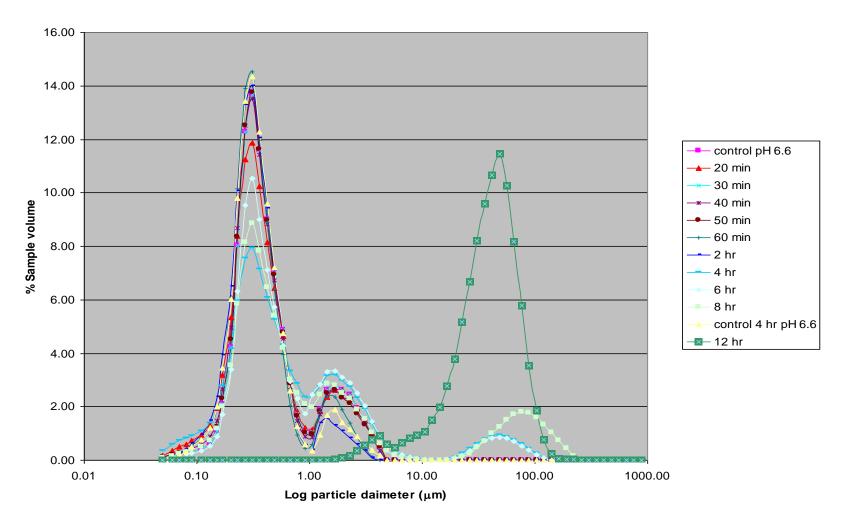
**Rennet-induced coagulation** 

### - no coagulation visually, no G' increase detected

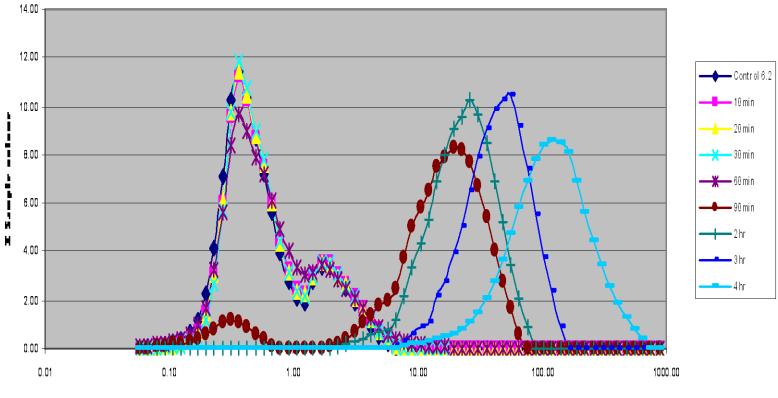
Bovine, Equine and Asinine Milks Renneted at 30°C for 120 min



- no cheese produced from equine milk
- no gel at 2X concentration of equine protein

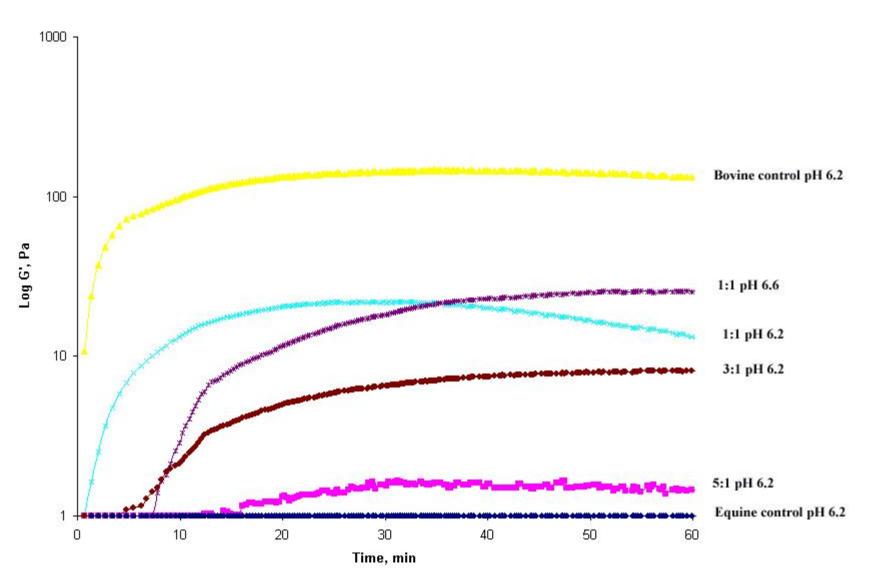

# Equine milk renneted at different pH values




**Left to right**: pH 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6 and 6.7

No curd formation but at lower pH values the milk forms floccs

# Aggregation of renneted equine milk at pH 6.6 assayed by laser light scattering

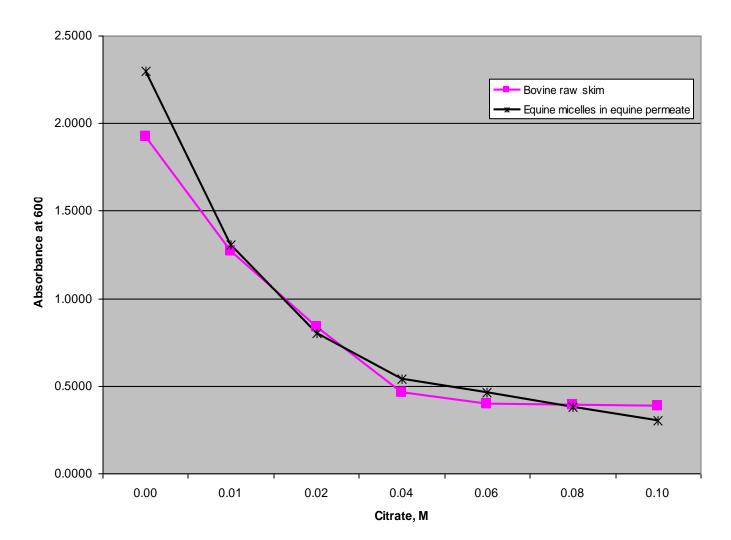



### Aggregation of renneted equine milk at pH 6.2 assayed by laser light scattering

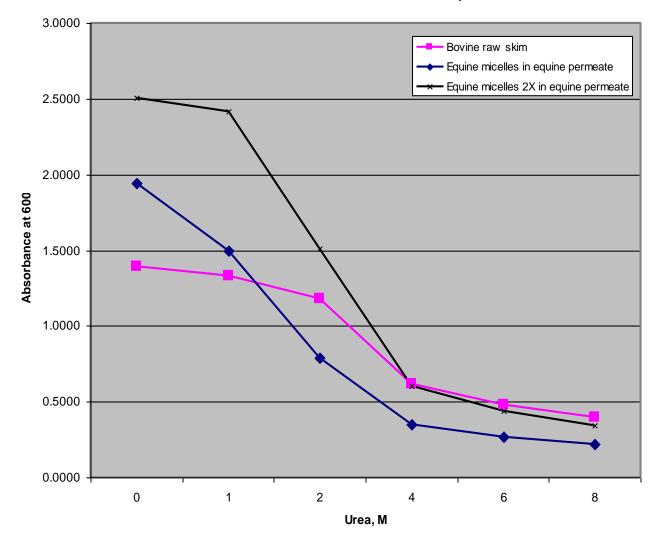


Log particle diameter (µm)

#### Equine:Bovine Milk Mixes Renneted

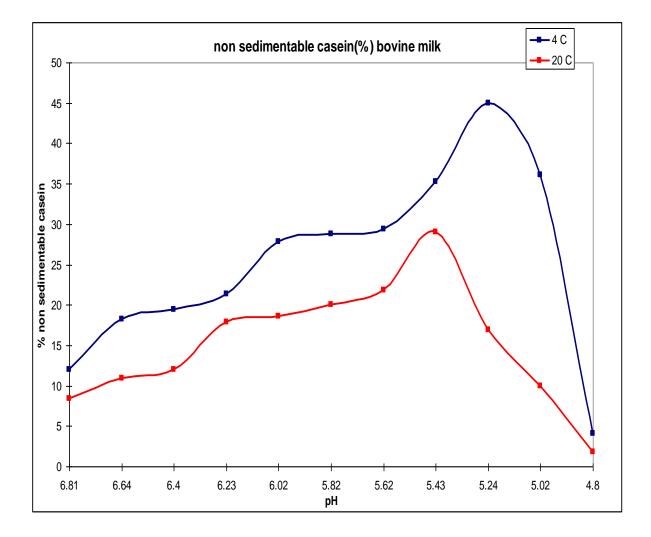



# Renneting of Mixtures of Bovine and Equine Milks

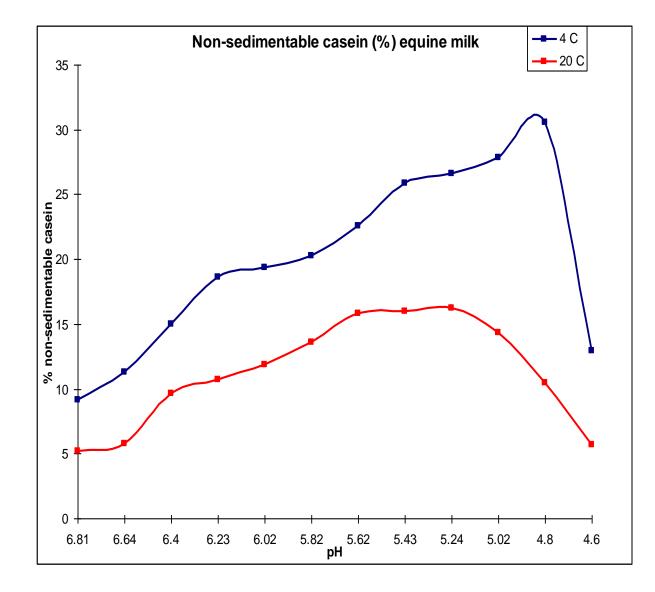

- PAGE of whey and curd from renneted mixtures of bovine and equine milk
- Showed that at least some equine caseins incorporated into curd
- More work required

### **Alcohol stability**

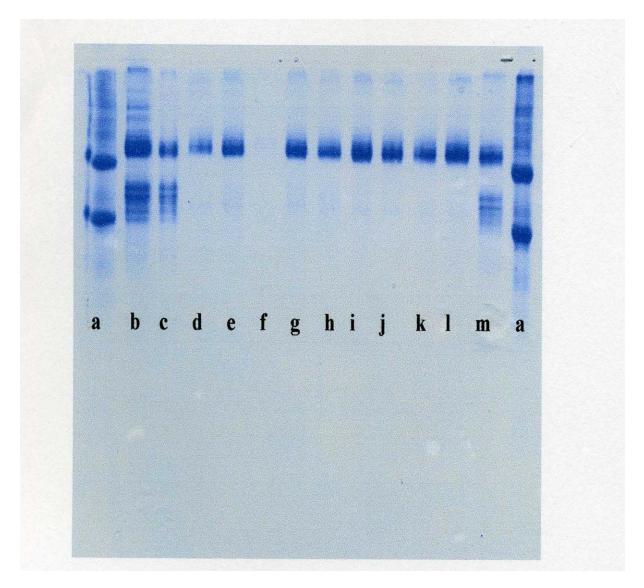
- At natural pH, equine milk stable to ~ 45% aqueous ethanol (v/v) [about same as bovine milk]
- Ethanol-mediated temperature-induced dissociation of casein micelles very different to bovine milk
- Addition of 70% v/v aqueous ethanol to bovine milk and heating to 70°C – becomes translucent. Cooling bovine/alcohol mix to 20°C or removal of ethanol restores of 'milky' appearance.
- Equine milk-ethanol not dissociated.
- Addition of 70% v/v aqueous ethanol to bovine milk, heat to 70°C, cool on ice ⇒ gelation; not equine milk




#### Dissociation of Casein Micelles in Bovine and Equine Milks with Citrate




#### Dissociation of Casein Micelles in Bovine and Equine Milks with Urea


Non-sedimentable (70,000 g x 2 h at 20°C or x 4 h at 4°C) casein in bovine milk,



# Non-sedimentable (70,000 g x 2 h at 20°C or x 4 h at 4°C) casein in equine milk,



### Non-sedimentable casein from equine milk at pH 6.7(d) to 4 (l)



# **Consumption of Equine Milk**

## Historical aspects

- traced back to 2000BC. Central Asia, Russia, Eastern Europe

## Current trends

- 30 million people worldwide drink equine milk regularly
- potential for further use in dietetics and therapeutics
- used for premature infants (composition similar to human milk etc, easily digested)
- used in the diets of the elderly and convalescents

## Health-giving claims

- using equine milk to treat many ailments [lack of epidemiological studies] tuberculosis (Russia), hepatitis, peptic ulceration, children with BMA
- low fat, low cholesterol, exceptionally high PUFA's ( $\omega$ -3)
- Probiotic and prebiotic effects
- antibacterial effects due to high lysozyme and lactoferrin
- Suggested dosage is generally about 250 mL equine milk/day

# **Equid Milk Products**





Pule – Balkan donkey milk cheese ~ €1,000/kg! Donkey milk products – Zasavica, Serbia







Koumiss

### Horse milk products

# Equine Milk Literature

General reviews:

Doreau, M (1994) *Lait* 74, 401-418 Doreau M & Martin-Rosset, W (2003), *EDS*, Roginski, Fuquay & Fox, eds. pp, 630-637 Park, Y.W. *et al.* (2006). Mare milk, in, *Handbook of Non-bovine Mammals,* pp 275-296

Equid milks:

Uniacke-Lowe, T., Huppertz, T. & Fox, P.F. (2010 Equine milk proteins: Chemistry, structure and nutritional significance.). *Int. Dairy J.* 20, 609-629.

Uniacke-Lowe, T & Fox, P.F. (2011). Milk:Equid milk. *Encyclopedia of Dairy Sciences,* 2<sup>nd</sup> edn, in press.

Uniacke-Lowe, T. & Fox, P.F.(2011). Equid milk: Biochemistry and processing. *Food Biochemstry and Food Processing*, 2 edn., in press. Wiley-Blackwell Pubishers.

