Instituut voor Landbouw- en Visserijonderzoek

THERMAL INACTIVATION KINETICS OF ALKALINE PHOSPHATASE IN EQUINE RAW

MILK

Sophie Marchand, Martine Merchiers, Winny Messens, Katleen Coudijzer and Jan De Block

AUGUST 23RD, EAAP 2010

Institute for Agricultural and Fisheries Research (ILVO)

Technology and Food Science Unit www.ilvo.vlaanderen.be Agriculture and Fisheries Policy Area

REVIVAL OF MARE'S MILK

- Mare's milk is not a new fad, but it is coming back into fashion.
- In the early 20th century it was so popular in Germany that it was delivered door to door.
- More recently it has enjoyed a revival in continental Europe, with equine dairy farms springing up in Belgium, France, the Netherlands and Norway.

ALKALINE PHOSPHATASE (ALP):

- Enzyme present in the milk of all mammals
- Universal usage of ALP test as index of the efficiency of HTST pasteurisation

(assessment of the thoroughness of heat treatments and/or the addition of raw milk to heated products)

The most important milk enzyme from a dairy technology viewpoint

HTST PASTEURISATION OF MILK:

 Mild and continous heating process (73-76°C during 15s)

- Reduction of the number of bacterial pathogens in milk to levels that do not consitute a risk to human health
 - To obtain **safe** pasteurised products for human consumption, a **6D reduction of pathogens** is required

EUROPEAN LEGISLATION:

In order to have a safe pasteurised product, the residual level of ALP after pasteurisation should be **less** than **350 mU/L** in **BOVINE** milk

No information available on the usefulness of equine ALP as an indicator!!

OBJECTIVE

- Since equine milk is also a vector for pathogenic bacteria, a test for correct pasteurization or contamination with raw milk is of great significance to public health
 - For milk of many species ALP is an adequate marker
- Is this also the case in equine milk?

SPECIES VARIABILITY in equine and bovine milk

Milk identification number	Breed	Number of animals	ALP activity ^a
EM1	Belgian 'Brabant' Draft horses		8077 ± 40
EM2	Haflinger horses		3371 ± 207
EM3	Haflinger horses	Raw equine	3517 ± 94
EM4	New Forest Pony	milk contains	6604 ± 119
EM5	New Forest Pony	+ 25_250 timor	$20\ 814 \pm 119$
EM6	Mix ^b		3121 ± 57
EM7	Mix ^c		6079 ± 46
EM8	Mix ^d	activity than	11423 ± 172
BM1	Holstein cows	bovine milk	805 833 ± 8422
BM2	Holstein cows		$1\ 050\ 267\ \pm\ 10\ 683$
BM3	Holstein cows		$740\ 433 \pm 7366$
BM4	Holstein cows		855 033 ± 3301
BM5	Mix ^e		764 633 ± 19 092

ILVO

FOOD KNG

Distribution of alkaline phosphatase in raw equine and bovine milk

Milk/milk fraction	Total volume (mL)	Protein concentration (g 100 mL ⁻¹)	Lactose concentration (g 100 mL ⁻¹)	Fat concentration (g 100 mL ⁻¹)	ALP concentration (mU 100 mL ⁻¹)	% ALP	ALP/lactose ratio
Equine milk Whole milk	100	1.74	7.08	0.96	351.7	100	49.68
Skim milk fraction	78.90	1.93	7.04 7.14	0.19	320.7 381.9	85.67	45.59 53.52
Bovine milk Whole milk Fat-enriched fraction Skim milk fraction	100 6.30 91.83	3.50 1.61 3.64	4.86 3.02 4.78	3.82 50.00 0.73	76 460 449 500 49 600	100 37.04 59.57	15 730 149 000 10 380

In **bovine milk**, ALP is partly associated with the **milk fat fraction** or with the **MFGM**, while in **equine** milk this association is negligible.

Heat inactivation of alkaline phosphatase in equine milk as a function of time and temperature

- Raw equine milk samples were heated in 100 μl glass capillaries in a water bath.
- Alkaline phosphatase activity was determined by the fluorimetric reference method (IDF, 2006).
- D-values (time required for 90% inactivation) were calculated by linear regression analysis.
- The Z-value (number of degrees Celsius needed for a 10 fold decrease in D-value) was calculated

Heat inactivation of equine alkaline phosphatase in raw equine milk at 5 different temperatures

Kinetic Parameters

EQUINE ALP					
D ₄₈ -value (min)	998				
D ₅₂ -value (min)	211				
D ₅₆ -value (min)	47.8				
D ₆₀ -value (min)	7.8				
D_{64} -value (min)	1.2				
E_a -value (kJ mol ⁻¹)	155				
z-value (°C)	(5.31)				

This Z-value is in the range of those reported in the literature for bovine ALP

FOOD/KN

Detection Limit

- Equine milk: ± 2200 mU/L → detection limit 0,2%: 2.7 decimal reduction in ALP
- Bovine milk: ± 1000000 mU/L → detection limit 0.0035%: 4.5 decimal reduction in ALP

Evaluation of the suitability of equine ALP as indicator for proper pasteurisation in equine milk

Conclusions

- Equine alkaline phosphatase is **not suitable** as indicator for proper pasteurization of equine milk
- Small (< 0.2%) contaminations of raw milk will not be detected in the pasteurized product
- This is due to the low intrinsic equine ALP levels and due to the subsequent detection limitations of the method

Instituut voor Landbouw- en Visserijonderzoek

Thank you for your attention!

Sophie Marchand, Martine Merchiers, Winny Messens, Katleen Coudijzer and Jan De Block

E-mail: sophie.marchand@ilvo.vlaanderen.be

AUGUST 23RD, EAAP 2010

Institute for Agricultural and Fisheries Research

Technology and Food Science Unit www.ilvo.vlaanderen.be Agriculture and Fisheries Policy Area

