Livestock farming systems in mountainous grasslands Outlook "2015"

Veysset P., Rozière B., Benoit M., Laignel G. INRA, UR1213 Herbivores, Clermont-Theix, France veysset@clermont.inra.fr

Session 03.4

ALIMENTATION
AGRICULTURE
ENVIRONNEMENT

Context

> **Grass:** 1st resource used by cattle & sheep farmers in Auvergne (mountain area in centre France, old volcanoes)

> Consistency of the production systems: interactive

management

- Pedo-climatic and environmental constraints

- Production target

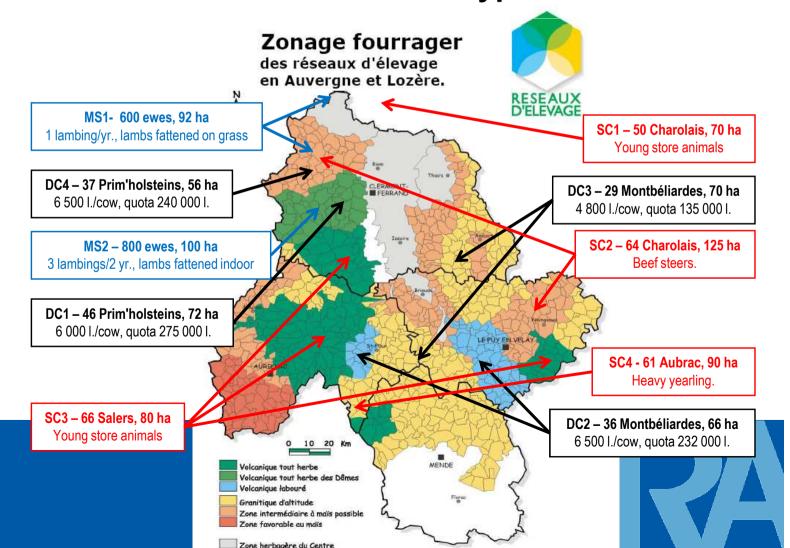
- Socio-economic and political context

- > These systems are constantly adapting:
 - CAP Health Check
 - Milk quotas abolition
 - Price of the agricultural products
 - Price of energy and inputs
 - Specifications of PDO cheeses

Objective

- Faced to these economic and political changes announced for 2015:
- => which **possible changes and predictable strategies** for dairy cattle farmers, suckler cattle farmers and meat sheep farmers?
- > To analyze the adaptations:
 - Animal and plant production balance
 - Size of the herds, quantity of outputs produced
 - Management of the system: fodder area, feeding, reproduction, ...

> Economic impacts


Eaap 2010

Methodology: model-based study

Farms studied

- > Diversity of the farming systems and diversity of the fodder area
- **⊃** Diversity of the farms modelled **⊃** 10 farm-types

- -4 Suckler Cattle
- -4 Dairy Cattle
- -2 Meat Sheep

Eaap 2010 61th Annual Meeting Heraklion, August 23rd-27th

Methodology: model-based study

Models used

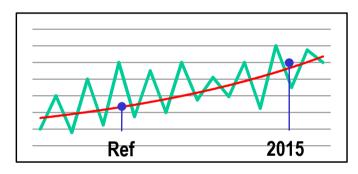
- > Opt'INRA (Veysset et al., 2005): optimization model (PL) for cattle farms
- > OSTRAL (Benoit, 1998): simulation tool for meat sheep farms

Production System reference (Ref)

CAP, prices, ...
Simulation / Optimization

Production System "2015"

Hypothesis


- > Farm structure (farm area, labour) = constant
- > Milk quotas = abolition
- > Milk production / cow = +12% (trend + quota abolition)

Methodology: model-based study

Changes in prices of agricultural products and inputs

- > Reference prices = observed average over 3 years (2004-2007) from the farms networks
- > 2015 prices = trend from "OECD and FAO agricultural outlook 2008-2017"

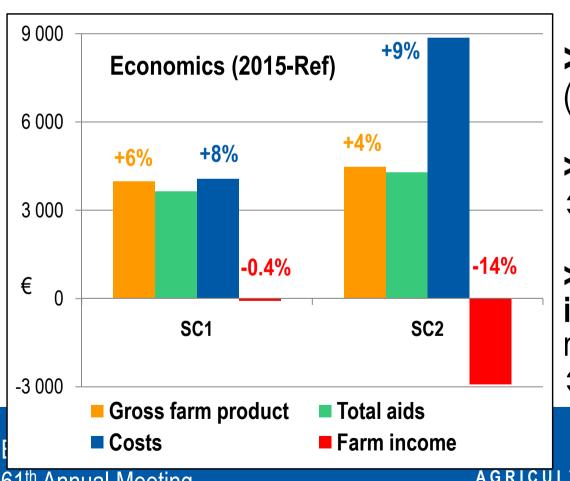
Grain sold, purch ased feedstuff	Purchased forage & straw	Beef	Sheep meat	Milk (except PDO)	Energy (crude oil barrel)	Chemical nitrogen	Pesticides, plastics	Veterinary, raising costs	
+40%	+10%	+5%	+10%	=	+66%	+29%	+30%	+5%	

Methodology: model-based study CAP Health Check – 2015 1st pillar subsidies

2003 Luxemburg subsidies	Ref	2015	
Suckler Cow Premium	Coupled 200 €/head	25% decoupled Coupled 150 €/head	Decoupled part
Slaughter Premium	Coupled 32 €/head	Decoupled	included in Single
Ewe and goat premium	Coupled 13.3 €/head	Decoupled	Farm Payment after levy (~13%)
Arable crop premium	Coupled ~70 €/ha	Decoupled	, (******)

New Subsidies 2010 CAP Heath Check	Amount	Status	
Ewe and goat premium	21 €/head	Coupled	
Grass premium	20-80 €/ha	Decoupled	Total amount calculated according to
Mountain milk	20 €/1000 I. Ceiling ~ 100,000 I.	Decoupled	historical references (ha, quota). Included in SFP

Eaap 2010 61th Annual Meeting Heraklion, August 23rd-27th Modulation of all these subsidies from the 1st pillar


14.6% (exemption 5000 €)

Results - Suckler cattle farms

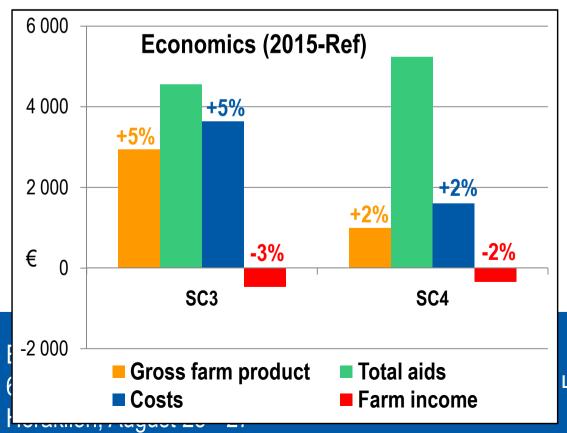
Charolais

- > For both system the optimal system Ref and 2015: the same
 - SC1: calf to weanling, 49 cows, 70 ha, 6ha cereals, 64 ha grass
 - SC2: calf to beef steers, 65 cows, 125 ha, 13ha cereals, 112 ha grass

- > ¬ gross farm product ≈ ¬ aids (new grass premium)
- > SC1: ↗ aids offsets ↗ costs
- **○**Farm income =
- > SC2: more dependent on the inputs (feedstuff for fattening), and more subsidies levy
- **⇒**Farm income **≥**

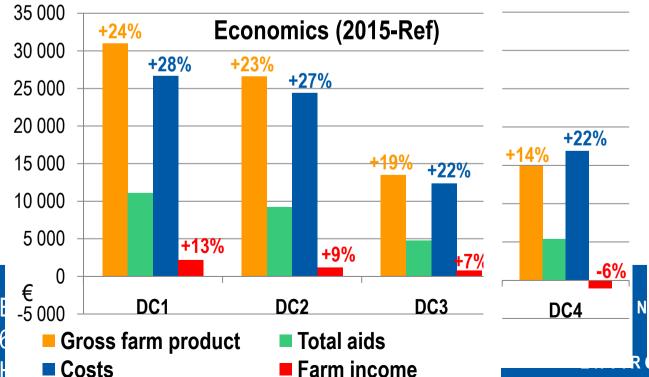
ALIMENTATION

AGRICULTURE


NVIRONNEMENT

Results - Suckler cattle farms Salers & Aubrac in mountain

2015 / Ref	SC3 Salers - calf to weanling 66 cows, 80 ha grass	SC4 Aubrac - calf to weanling 61 cows, 92 ha grass
Calvings	=	=
Age, weight of sold males	-1 month, -20 kg	-4 months, -100 kg
Live weight produced	-4% (-807kg)	-10% (-2950kg)


- > Live weight produced ≥ total of the aids <a> => Gross farm product <a> => Total <a> => Total
- **⇒** Farm income ≈
- > Reducing the outputs to limit the inputs, and thus the costs

ALIMENTATION
LTURE
ENVIRONNEMEN

Results - Dairy cattle farms

2015 / Ref	DC1 – 72 ha 100% grass 48 cows*6000l	DC2 – 66 ha 80% grass 36 cows*6500l	DC3 – 72 ha 93% grass 30 cows*4800l	DC4 – 56 ha 5 ha maize 30 cows*6500l
Calvings	+9% (+4)	+8% (+3)	+3% (+1)	+3% (+1)
Milk sold	+22% (+60,000l)	+21% (+48,900l)	+20% (+27,090I)	+14% (+33,120l)
Stocking rate	+1% (+0.01)	+9% (+0.08)	+3% (+0.02)	+6% (+0.06)
Concentrates g/l	+33% (+67g/l)	+13% (+41g/l)	+27% (+57g/l)	-8% (-17g/l)

- > Milk production (/cow and total) <a> → with <a> → concentrates
- > DC1, DC2 and DC3:
 Gross product ↗, costs ↗

 ☐ Farm income ↗
- > DC4: more dependent on the inputs (more intensive), and more subsidies levy
- **⇒**Farm income **≥**

Results – Dairy cattle farms / opportunities

PDO cheese Saint-Nectaire (DC1)

New specifications (2010):

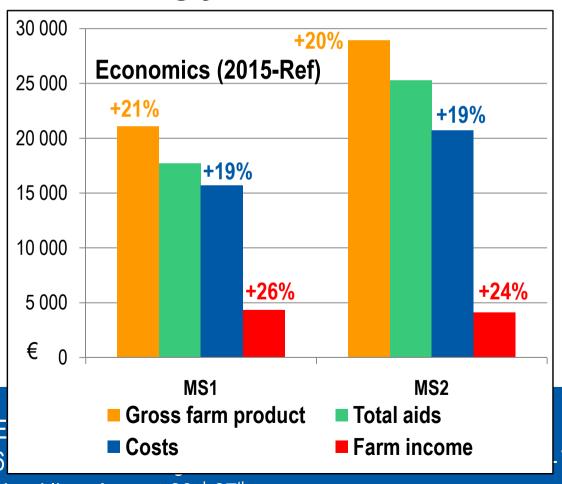
- > No silage
- > Concentrates 30% max of the cows diet
- > Milk price: +64 €/1000 litres

- No grass silage
- > chemical N fertilizers
 17 kg N/ha vs 28
- ≥ milk production (-5%)
- → grazed area (+2ha)
- 7 concentrates kg/cows and g/l (278 g/l vs 239)

Economic impacts
(2015 PDO cheese / 2015)

	<u> </u>
Gross farm product	+10%
Total costs	-3%
Farm income €/worker	+50%

> 6 500 L/cow => Impossible



ALIMENTATION
AGRICULTURE
ENVIRONNEMEN

Results – Meat sheep farms

- > MS1: 102 ha in mountain, 100% grass, 800 ewes, 3 lambings per 2 years, lambs fattened indoor
- > MS2: 92 ha in mountain, 88 ha grass + 5 ha cereals, 600 ewes, 1 lambing/years, lamb fattened on grass

- > Total aids = +50%
 new ewe + new grass premiums
- **⇒** Farm income/worker +25% (reaches the same level than other farms)
- > Farm income/worker for meat sheep farms was the lower of all the French farms

ALIMENTATION
TURE

Discussion, conclusion

Grassland systems: strengthened

- > \(\sigma\) of the farm income for the less grass systems
- > Redistribution of aids

Contrasting evolution of the systems

- > Suckler cattle: inputs saving => limitation of the live weight production
- > Dairy cattle: <a> → milk production => → kg concentrates/cow and/l.

Large uncertainties

- > Prices (beef, milk, energy, inputs), shocks, macro-economic balances
- > Flexibility, adaptative capacities of the systems, labour

Opportunities

> Demarcated quality: PDO cheeses, animals fattened on grass

ALIMENTATION
AGRICULTURE
ENVIRONNEMENT

