DNA footprints of livestock domestication and evolutionary history

Paolo Ajmone Marsan Istituto di Zootecnica Università Cattolica del S. Cuore Piacenza, Italy paolo.ajmone@unicatt.it

Darwin Symposium, 60° EAAP meeting, Barcelona, August, 24, 2009

INDEX

- Domestication: a turning point
- Darwin and domestic animals
- A domestication experiment
- A few glances in the past
- What's next?

Domestication: a turning point

Multiple domestications

Archaeology and archaeozoology

Change in tools Change in settlements Artistic representations

Bone and horns morphology and size Temporal shifts in faunal distribution Sex ratio of remains

Radiocarbon dating

Zeder M. A. PNAS 2008;105:11597-11604

Cattle ancient remains

8500 BC in the Fertile Crescent 6500 BC in Africa 7000 BC in the Indus valley 4000 BC in North East Asia

(Meadow, 1993; Helmer et al., 2005; Payne & Hodges 1997)

Darwin and Domestic Animals

Darwin and domestic animals

I HAVE been led to study domestic pigeons with particular care, because the evidence that all the domestic races are descended from one known source is far clearer than with any other anciently domesticated animal. Secondly, because many

Darwin and domestic animals

No doubt man selects their varying individuals, sows their seeds, and again selects their varying offspring...

Man therefore may be said to have been trying an experiment on a gigantic scale; and it is an experiment wich nature during the long lapse of time has incessantly tried

C. Darwin The variation of animals and plants under domestication London: J. Murray 1868

Darwin's observation on domestic animals

Morphological or physiological changes	Species	
appearance of dwarf and giant varieties	all	
piebald coat color	all	
wavy or curly hair	sheep, dogs, donkeys, horses, pigs, goats, mice, guinea pigs	Trut 1999, American
rolled tails	dogs, pigs	Scientist
shortened tails, fewer vertebrae	dogs, cats, sheep	
floppy ears	dogs, cats, pigs, horses, sheep, goats, cattle	Trut 2009,
changes in reproductive cycle	all except sheep	BIOESSAYS

Same genetic process during the domestication of different species?

A domestication experiment

Belyaev hypothesis

- Behavior is regulated by a fine balance between neurotransmitters and hormones
- Genes that control that balance occupy a high level in the hierarchical system of the genome.
- Slight alterations in those regulatory genes produce a network of changes.

The farmed fox Belyaev experiment

Results

Change in morphological traits (ears, tail, spotting, skeletal)

- Delay in development, neotenic behavior
- Early puberty and loss of seasonality
- Attenuated activity of the Hypothalamic-Pituitary-Adrenal axis (stress response and fear)

Epigenetics and genomics!

A few DNA glances in the past

Two genomes, three modes of transmitting information

Haplogroups and haplotypes

CGGTG CAGTG CAGTG CAATG

Groups of sequences descending from a common ancestor

Cattle Genechip ~54001 SNPs

BTAY				
BTAX				
BTA29				
BTA25				
BTA27				
BTA26				
BTA25				
BTA24				
BTA23				
BTA22				
BTA21				
BTA20				
BTA19				
BTA18				
BIA1/				
BIA15				
BIA15				
BIA14				
BIA13				
BIA12				
BIAT				
DIATU				
DIAB DTAB				
DIAU				
BTAB				
BTAS				
BTAA				
BTA3				
BTA2			THE REPORT OF THE REPORT OF THE	
BTA1				
	50000000	100000000	150000000	200007

Glance 1: *B. indicus* and *B. taurus* domestication event(s)

B. taurus and B. indicus

Two auroch subspecies domesticated in different geographic areas some 10.000 b.p.

Troy et al., 2001 Nature

Divergence between *Bos indicus* and *Bos taurus* dates back at least 100.000 years

Multiple Bos taurus domestication events?

In Africa (T1)? In Eastern Asia (T4)?

Glance 2: European auroch contribution to taurine diversity

Glance 3: colonization routes

Cattle colonization routes in Europe

Beja-Pereira et al., PNAS 2006

Towards a strategy for the conservation of the genetic diversity of European cattle

Scatterplot diagram showing PC 1 and PC 2 from 30 microsatellite allele frequencies

Central Europe

Italy

Near East

All haplogroups (T, T1, T2 and T3)

Central Italian cattle breeds Maremmana Chianina

Cabannina

Calvana

When did they arrive?

Links with Etruscan civilization

ALL ROADS TAKE TO ROME.....?

Before Rome many roads already took nearby, to Tarquinia, Caere, Cerveteri, Chiusi, Murlo...

Glance 4: the signatures of selection

Fig. S21. Genome-wide scan for positive selection. The distribution of F_{ST} averaged across a sliding 8 SNP window is shown for all breeds. Dashed lines represent the 0.1% and 99.9% quantiles for the genome-wide F_{ST} values.

Table 1. Genomic regions associated with extreme F_{ST} values with gene content consistent with domestication. F_{ST} values averaged over eight adjacent SNP. Gene functions from OMIM and NCBI Gene database, except for *R3HDM1* described in (2).

Genes	Index SNP	FST	BTA	Location	Effect or important phenotypes
High values					
ZRANB3, R3HDM1	rs29021800	0.31	2	6474028664931017	Feed efficiency
WIF1	BTA-27454	0.29	5	5269674953098507	Mammalian mesoderm segmentation
SPOCK1	BTA-142690	0.30	7	4750112247899778	Proteoglycan—synaptic fields of the developing CNS
NBEA	BTA-153392	0.34	12	2588419226189285	Human idiopathic autism
NMT1, DCAKD, C1QL1	BTA-45533	0.31	19	4608894646157261	Activator of serum complement system
DACH2, CHM, POU3F4, BRWD3	BTA-161991	0.39	х	4147133844478564	Human mental retardation
NLGN3 to DGAT2L6	BTA-164256	0.36	х	4927903550192452	Severe combined immunodeficiency
Low values					
PPARGC1A, DHX15, SOD3	BTC-039516	0.04	6	4535470745415844	Antioxidative extracellular protection
No known gene	BTC-049723	0.05	14	45698045204473	
DNAH9	rs29018632	0.05	19	3094340431220868	Multisubunit molecular motor
POU5F1, MHC	BTA-55856	0.05	23	2789593228145846	Major histocompatibility complex
ZNF187	rs29024230	0.04	23	3024123630502690	Expressed in olfactory tissues
AUTS2	BTC-074065	0.04	25	3177310732498861	Human autism susceptibility candidate
RYR2	rs29011563	0.05	28	87365998772178	Stress- and exercise-induced sudden cardiac death

Courtesy of Tad Sonstegard USDA

Courtesy of Tad Sonstegard USDA

Science

Poster 53-26

What's Next?

....Sequencing....

containing labeled strands

New technologies

Saving reagents

$10^7 \in \rightarrow 10^5 \in \rightarrow 10^4 \in (?)$

Highly parallel analyses

Milions SNPs in the cattle genome

A Global View

www.globaldiv.eu

The ultimate glance in the past

Research Centre on Modern and Ancient DNA diversity - BioDNA (Piacenza-IT)

ACKNOWLEDGEMENTS LAB ANIMAL GENETICS UNICATT (Piacenza-IT)

- Resgen Consortium
- Bovine HapMap Consortium
- SelMol Consortium

- A. Torroni
- A. Achilli
- L. Cavalli-Sforza
- P. Taberlet

Thank you for your attention

Ch. Sarwin mud. 7" 1874