

Faculty of Agricultural and Nutritional Science

CAU

Christian-Albrechts-University Kiel Institute of Animal Breeding and Husbandry

Using Fuzzy Logic to model airborne spread of foot and mouth disease

Institute of Animal Breeding and Husbandry Christian-Albrechts-University, Kiel itraulsen@tierzucht.uni-kiel.de Session 54, Abstract 4469

Foot and mouth disease (FMD)

- Highly contagious virus
- Affects all cloven hoofed animals
 - Cattle, pigs, sheep
- Clinical signs

- Vesicles on tongue, udder, inter-digital space
- Used to estimate when animal was infected
- Transmission via:
 - Direct animal-to-animal contact
 - Indirect contacts of personnell and vehicles
 - Airborne spread

Modeling airborne FMD transmission

 Simulation models for FMD to evaluate control strategies to be prepared if FMD outbreak occurs

 \rightarrow need to model airborne FMD spread

- Gaussian Dispersion model:
 - Puff of virus particles
 - Relatively easy to calculate
 - Does not account for topography
- Lagrangian particle model:
 - Trajectories of the virus particles
 - Complex model
 - Accounts for topography

$$[x,y,z) = \frac{Q}{2\pi \overline{u} \sigma_y \sigma_z} \exp(-\frac{y^2}{2\sigma_y^2}) [exp(-\frac{(z-h)^2}{2\sigma_z^2}) + exp(-\frac{(z+h)^2}{2\sigma_z^2})]$$

$$\sigma_y = B(\frac{x}{\overline{u}})^{\beta}, \sigma_z = A(\frac{x}{\overline{u}})^{\alpha}$$

- Linguistic variables
- Membership functions

Fuzzy Logic

Assuming

>a minimum of 65-70 % relative humidity,

>medium temperatures,

- ≻a low to medium wind speed,
- ≻a constant wind direction,
- ➤ stable atmospheric conditions,
- ≻and a flat topography,

the FMD virus can be spread even over large distances over land and water.

• weather data from Vienna, 2004

relative frequency (%) of wind speed and stability class combinations Wind speed (m/s) 1 2 3 4 5 6 7 8 9 10 12 1.1 0.3 3 Stability 0.8 12.8 17.2 12.3 13.7 4 18.0 6.3 5.7 3.6 1.1 0.3 class 0.3 1.9 2.2 0.8 5 1.4 0.3

 species-specific virus emission and susceptibility

Study design

Parameters and their ranges for the different models

Input parameter	Gaussian	Fuzzy 1 Fuzzy 2		Fuzzy 3	
x (m)	0< x ≤10,000	0< x ≤10,000	0< x ≤10,000	0< x ≤10,000	
y (m)	0< y ≤10,000	0< y ≤ 3,000 ^A	0< y ≤ 3,000 ^A	0< y ≤ 3,000 ^A	
Q (TCID ₅₀ /m ³ and day)	0 ≤ Q ≤ ∞	Q=4 * 10 ^{10 B}	Q=4 * 10 ^{10 B}	Q=4 * 10 ^{10 B}	
u (m/s)	1≤ u ≤ 12	u=4	1≤ u ≤ 12	1≤ u ≤ 12 ^C	
Stability class	2 ≤ s ≤ 7	s=4	s=4	s={3, 4, 5} ^c	

^A: larger y values always result in no airborne transmission

^B: refers to 100 pigs with max. virus emission

^C: all combinations of u and s from Vienna data set

Validation

- Sensitivity = TP/(TP+FN)
- Specificity = TN/(TN+FP)
- Error rate = FP/(FP+TP)

		Gaussian model		
		yes	no	
Fuzzy model	yes	TP	FP	
	no	FN	TN	

10-fold cross validation

- training data: all white sets per row
- testing data: all black sets per row

k = 5 subsets

 $n_{tot} = 10,000$

Results – cattle fuzzy 1

sensitivity = 90.3 % specificity = 95.5 % error rate = 12.2 %

Results – sheep fuzzy 1

sensitivity = 92.3 %
specificity = 98.6 %
error rate = 52.2 %

Results – pigs fuzzy 1

sensitivity = 96.9 % specificity = 99.9 % error rate = 38.9 %

Results – cattle and pigs

	Model	Sensitivity	Specificity E	rror rate	TP	FP	FN
cattle	Fuzzy 1	90.3 %	95.5 %	12.2 %	24.0 %	3.3 %	2.6 %
	Fuzzy 2	75.5 %	91.1 %	29.4 %	16.6 %	6.9 %	5.4 %
	Fuzzy 3	75.9 %	90.8 %	26.1 %	19.5 %	6.9 %	6.2 %
pigs	Fuzzy 1	96.9 %	99.9 %	38.9 %	0.20 %	0.12 %	0.01 %
	Fuzzy 2	74.6 %	99.8 %	61.7 %	0.14 %	0.16 %	0.04 %
	Fuzzy 3	78.7 %	99.9 %	51.1 %	0.18 %	0.14 %	0.04 %

- Graphics show a close relationship between the Gaussian and the Fuzzy model
- Risk of infections for cattle is easiest to estimate
- Sensitivity, specificity and error rate show good results for cattle and moderate results for sheep and pigs
- Results suggest that the fuzzy logic approach can be used to model airborne spread
- More detailed calibration of the model could improve the peformance of the model

Faculty of Agricultural and Nutritional Science

CAU

Christian-Albrechts-University Kiel Institute of Animal Breeding and Husbandry

Thank you for your attention!

