Predicting bovine milk fat composition using infrared spectroscopy

M.J.M. Rutten *, H. Bovenhuis *, K.A. Hettinga †, H.J.F. van Valenberg † and J.A.M. van Arendonk * * Animal Breeding and Genomics Centre † Dairy Science and Technology Group, Wageningen University, The Netherlands

This study was part of the 'Milk Genomics Initiative' and the project 'Melk op maat', funded by:

> nzo nederlandse zuivel organisatie

The Dutch dairy association

CRV

CRV (cooperative cattle improvement organization)

The province of Gelderland

The Dutch technology foundation

The Dutch ministry of economic affairs

The province of Overijssel

Introduction 1/2

- Fat% is routinely determined by Infrared (FTIR)
- No info is available on fat composition
- This might be important for human health
- Might provide management info on cows
- Fat composition can be determined by Gas
 Chromatography (GC) but this is quite expensive

Introduction 2/2

- Soyeurt et al. (2006) have shown potential of FTIR for predicting fat composition, on a limited dataset (n=49)
- Already developed pred. eq. based on ~3600 obs
- The aim of this study:
- Quantify the influence of season on prediction

- Data: 1834 milk samples from 'Winter', 1826 milk samples from 'Summer', all from black HF cows
- GC analysis of milk fat \rightarrow ~50 individual fatty acids
- \blacksquare FTIR analysis of milk \rightarrow 1060 frequencies of IR
- Focus: Fatty acids (FA) expressed on fat basis (g/100g), alternatively on milk basis (g/dL)

Materials and methods 2/2

- Focus: C14:0, C16:0, C18:1*cis*9,
 C18:2*cis*9,*trans*11 (CLA) and the ratio of saturated to unsaturated fatty acids (ratioSFA:UFA)
- Partial Least Squares (PLS)
- Calibration on 50% data, validation on other 50%
- Calibration on winter and validation on summer and vice versa

Results 1/4 – trait differences

	winter		summer	
FA (g/100g)	mean	sd	mean	sd
C14:0	11.62	0.91	11.16	1.04
C16:0	32.61	2.83	29.19	3.50
C18:1 <i>cis</i> 9	18.03	2.10	20.27	2.79
C18:2 <i>cis</i> 9, <i>trans</i> 11 (CLA)	0.39	0.11	0.56	0.27
ratioSFA:UFA	2.81	0.37	2.43	0.44

Mean values were significantly different (P<0.001)</p>

FA (g/100g)	r ² win-win
C14:0	0.50
C16:0	0.36
C18:1 <i>cis</i> 9	0.66
C18:2 <i>cis</i> 9, <i>trans</i> 11 (CLA)	0.38
ratioSFA:UFA	0.72

FA (g/100g)	r ² win-win	<mark>۲</mark> 2 win-sum
C14:0	0.50	0.44
C16:0	0.36	0.36
C18:1 <i>cis</i> 9	0.66	0.66
C18:2 <i>cis</i> 9, <i>trans</i> 11 (CLA)	0.38	0.33
ratioSFA:UFA	0.72	0.68

FA (g/100g)	r ² win-win	<mark>۲</mark> 2 win-sum	r ² sum-sum
C14:0	0.50	0.44	0.60
C16:0	0.36	0.36	0.65
C18:1 <i>cis</i> 9	0.66	0.66	0.80
C18:2 <i>cis</i> 9, <i>trans</i> 11 (CLA)	0.38	0.33	0.46
ratioSFA:UFA	0.72	0.68	0.85

FA (g/100g)	r ² win-win	<mark>۲</mark> 2 win-sum	r ² sum-sum	r ² sum-win
C14:0	0.50	0.44	0.60	0.63
C16:0	0.36	0.36	0.65	0.53
C18:1 <i>cis</i> 9	0.66	0.66	0.80	0.80
C18:2 <i>cis</i> 9, <i>trans</i> 11 (CLA)	0.38	0.33	0.46	0.36
ratioSFA:UFA	0.72	0.68	0.85	0.84

FA (g/100g)	% win-win
C14:0	0.5
C16:0	0.4
C18:1 <i>cis</i> 9	0.3
C18:2 <i>cis</i> 9, <i>trans</i> 11 (CLA)	2.1
ratioSFA:UFA	0.3

FA (g/100g)	% win-win	% win-sum
C14:0	0.5	0.2
C16:0	0.4	3.3
C18:1 <i>cis</i> 9	0.3	2.5
C18:2 <i>cis</i> 9, <i>trans</i> 11 (CLA)	2.1	7.0
ratioSFA:UFA	0.3	3.2

FA (g/100g)	% win-win	% win-sum	% sum-sum
C14:0	0.5	0.2	0.9
C16:0	0.4	3.3	0.3
C18:1 <i>cis</i> 9	0.3	2.5	0.3
C18:2 <i>cis</i> 9, <i>trans</i> 11 (CLA)	2.1	7.0	3.6
ratioSFA:UFA	0.3	3.2	1.2

FA (g/100g)	% win-win	% win-sum	% sum-sum	% sum-win
C14:0	0.5	0.2	0.9	1.2
C16:0	0.4	3.3	0.3	7.4
C18:1 <i>cis</i> 9	0.3	2.5	0.3	3.3
C18:2 <i>cis</i> 9, <i>trans</i> 11 (CLA)	2.1	7.0	3.6	17.9
ratioSFA:UFA	0.3	3.2	1.2	2.0

Conclusions 1/2

- Results of Soyeurt et al (2006) can be improved by using more data
- Effect of season on r² is small
- Effect of season on bias can be large for FA of low concentration
- Unbiased estimation of FA of low concentration requires data collected in several seasons

Conclusions 2/2

- Desired r² of ~0.6 requires FA with ~2.5 g/100g
- Desired r² of ~0.8 requires FA with ~0.2 g/dL
- There is scope on product differentiation or breeding value estimation for fat composition
- Helps the dairy industry to work towards human health supporting products

Predicting bovine milk fat composition using infrared spectroscopy

- Thank you for your attention!
- The authors acknowledge:

FOSS

400 Dutch farmers

Poster S1_14 by Myrthe Maurice

