

Session 54 Abstract 3776 nbuttchereit@tierzucht.uni-kiel.de

CAU

Christian-Albrechts-University of Kiel Institute of Animal Breeding and Husbandry

Investigations on fat protein ratio of milk and daily energy balance in Holstein Friesians

> N. Buttchereit¹ E. Stamer² W. Junge¹ G. Thaller¹

¹Institute of Animal Breeding and Husbandry Christian-Albrechts-University of Kiel ²TiDa GmbH, Westensee, Germany

Measurement of energy balance itself too costly

 \rightarrow Search for related traits

• Fat protein ratio of milk = useful selection criterion?

Aim of the study

- I. Model evaluations for fat protein ratio & daily energy balance
 - \rightarrow suitable models for further genetic analyses

II. Investigation of the relationship between fat protein ratio & energy balance

		Data set					
		Heifers DIM 11-180	Heifers DIM 11-305	Cows DIM 11-305			
Trait				Parity = 2	Parity ≥ 3		
FPR	Animals	577	613	72	76		
	Records	10,800	14,452	1,853	1,908		
EB	Animals	443	455	16	28		
	Records	40,931	53,032	1,056	2,686		

EB: daily energy balance, FPR: fat protein ratio, DIM: days in milk

Model testing for fat protein ratio (FPR) & daily energy balance (EB)

Random regression model

$$y_{ijkl} = TD_i + AFC_j + \sum_{m=1}^{n} b_m * x_{ijklm} (d) + \sum_{m=0}^{n} cow_{km} * x_{ijklm} (d) + e_{ijkl}$$

$$\begin{array}{lll} y_{ijkl} & k^{th} \mbox{ observation of the FPR or EB} \\ TD_i & fixed \mbox{ effect of the } i^{th} \mbox{ test day (FPR: } i = 1,...,155, \mbox{ EB: } i = 1,...,735) \\ AFC_j & fixed \mbox{ effect of the } j^{th} \mbox{ class of age at first calving } (j = 1,...,5) \\ & (1: \mbox{ AFC } \leq 25, 2: \mbox{ AFC } = 26, 3: \mbox{ AFC } = 27, 4: \mbox{ AFC } = 28, 5: \mbox{ AFC } \geq 29) \\ b_m & fixed \mbox{ regression coefficients on the function term of lactation day d} \\ & cow_{km} & m^{th} \mbox{ random regression coefficient of the } k^{th} \mbox{ animal} \\ & (FPR: \mbox{ k } = 577 \mbox{ EB: } \mbox{ k } = 383) \\ e_{ijkl} & random \mbox{ residual effect} \end{array}$$

Function terms of lactation day d

	Function terms					
Functions of lactation day d	X _{ijk0}	X _{ijk1}	X _{ijk2}	X _{ijk3}	X _{ijk4}	
Ali & Schaeffer	1	d/310	(d/310) ²	ln(310/d)	(ln(310/d)) ²	
Wilmink	1	d	e ^{-0.05d}			
Guo & Swalve	1	\sqrt{d}	ln(d)			
Legendre 3	1	sd	(3sd ² -1)/2	(5sd ³ -3sd)/2		
Legendre 4	1	sd	(3sd ² -1)/2	(5sd ³ -3sd)/2	(35sd ⁴ -30sd ² +3)/8	

 $sd=1+2(d-d_{min}/d_{max}-d_{min})$ $d_{min}=11, d_{max}=310$

Model testing

- Goodness of fit \rightarrow Evaluation criteria
- AICC
- BIC
- Correlation between real observations & estimated values
- Inspection of residuals plotted against days in milk
- <u>Results</u>
- \rightarrow Random regression superior to fixed regression models
- \rightarrow Ali & Schaeffer function most suitable for modelling both the fixed and the random regression part of the mixed model
- \rightarrow Ali & Schaeffer RR model used for further investigations

Mean residuals of fat protein ratio plotted against days in milk for four functions of days in milk

HILLENSIS LERICULT

Lactation curves for fat protein ratio (FPR) & daily energy balance (EB)

Fat protein ratio

- FPR is highest in the initial lactation period when energy deficit is most severe
- EB stabilizes at the same time as FPR stops decreasing
- Mirror-inverted patterns
 - → causal relationship between both traits?

Repeatability of fat protein ratio & daily energy balance for five random regression models

Correlation between cow effects for fat protein ratio & daily energy balance

Conclusion

- Metabolic stability needs to be improved
- Fat protein ratio of milk seems to be a suitable indicator for the energy status, at least during the most metabolically stressful stage of lactation
- Further genetic investigations are needed