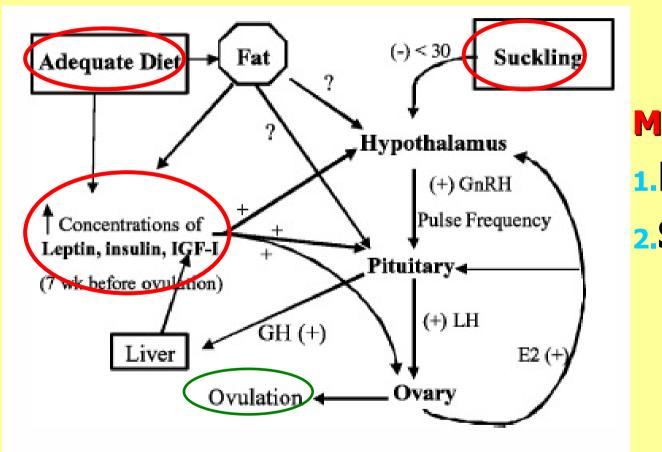


Effects of suckling restriction and parity on metabolic and reproductive function of autumn-calving beef cows

J. Álvarez-Rodríguez, J. Palacio, A. Sanz

Centro de Investigación y Tecnología Agroalimentaria, Gobierno de Aragón



60th EAAP Annual Meeting, 24-28 August 2009

Introduction

Factors affecting post-partum reproductive physiology

Major effects:

- 1. Nutrition
- 2.Suckling

(Wettemann et al., 2003)

OBJECTIVES

■ To evaluate the effect of nursing frequency and parity on productive, metabolic and reproductive parameters of Parda de Montaña beef cows.

MATERIAL AND METHODS - Treatments

Calf management from the day after calving:

ONCE A DAY (1 x 30 min, 0800 h)

MULTIPAROUS TWICE A DAY (2 x 30 min, 0800 and 1600 h)

AD LIBITUM

PRIMIPAROUS AD LIBITUM

MATERIAL AND METHODS – Post-partum feeding

- Medium quality total dry mixed ration (TMR)
 - 9.6% CP, 52.3% NDF, 28.7% ADF

- 13 kg TMR → 100 MJ ME
 - 1 x maintenance in multiparous (560 kg,
 9.0 kg ECM yield)
 - 0.4 kg/day target ADG in primiparous (500 kg, 9.0 kg ECM)

MATERIAL AND METHODS – Measurements and assays

- Live-weight at calving-birth and once a week → ADG by regression during lactation.
- BCS of cows at calving and at the end of 3 months pp (Lowman et al., 1976).
- Milk yield and composition at weeks 2, 7 and 13 pp.
- Blood samples twice a week -> progesterone as indicator of ovulation.
- Blood samples every 2 weeks → blood metabolites and IGF-I.
- Oestrus expression → Automated activity sensor.

MATERIAL AND METHODS – Statistical analysis

- Data were analysed using the SAS statistical software.
- **Cow-calf productive and reproductive performance** → General linear model (GLM procedure) → separate analysis for suckling restriction (RESTR1 vs. RESTR2 vs. ADLIBC) or parity effects (ADLIBC vs. ADLIBH).
- Blood metabolites and endocrine IGF-I of the cows → Mixed linear model (MIXED procedure) by taking into account as well week of lactation effect.
- Multiple comparisons among treatments → Tukey's method (level of significance=0.05).
- Survival analysis (LIFETEST procedure) → effects of nursing frequency and parity on the interval from calving to first ovulation → Wilcoxon test

RESULTS AND DISCUSSION – Live-weight and body condition

	Cows			Heifers	<i>P</i> -value	
	RESTR1	RESTR2	ADLIBC	ADLIBH	Treat.	Parity
LW at calving, kg	562	556	558×	495 ^y	NS	***
Cow ADG, kg/d	0.04 ^a	0.11b	-0.13 ^b	-0.01	*	NS
BCS at calving	2.57	2.57	2.57	2.49	NS	NS
BCS 3 months pp	2.68 ^a	2.56ab	2.55 ^{b,x}	2.45 ^y	0.09	*
LW at birth	40.6	42.6	41.0×	36.1 ^y	NS	**
Calf ADG, kg/d	0.67 ^b	0.92a	0.84 ^a	0.86	**	NS

[✓] RESTR1 had greatest gains and BCS during lactation.

[✓] ADLIBC tended to maintain better body condition than ADLIBH, but calves grew similarly.

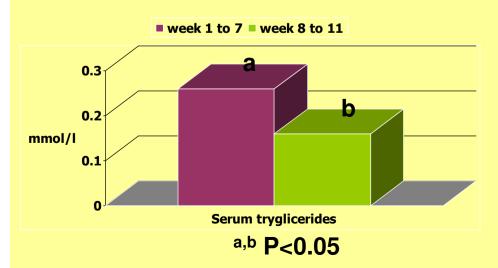
RESULTS AND DISCUSSION – Milk production and composition

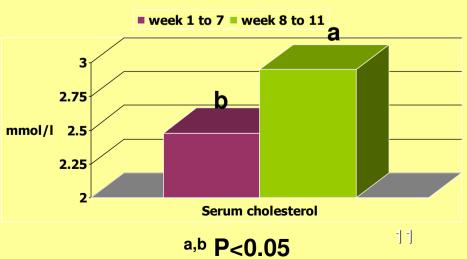
	Cows			Heifers	<i>P</i> -value	
	RESTR1	RESTR2	ADLIBC	ADLIBH	Treat.	Parity
Milk yield, kg	7.4b	8.6ª	9.1 ^a	8.0	*	NS
Energy-corrected milk, kg	7.8	8.5	8.9	7.6	NS	NS
Milk fat, %	4.20 ^a	3.58 ^b	3.66 ^b	3.54	**	NS
Milk protein, %	3.90	3.74	3.67	3.47	NS	NS
Milk lactose, %	4.71	4.87	4.66	4.47	NS	NS

- ✓ RESTR1 showed the lowest milk production and greatest milk fat content.
- ✓ Any milk production or composition difference between parities.

RESULTS AND DISCUSSION – Serum lipoproteins

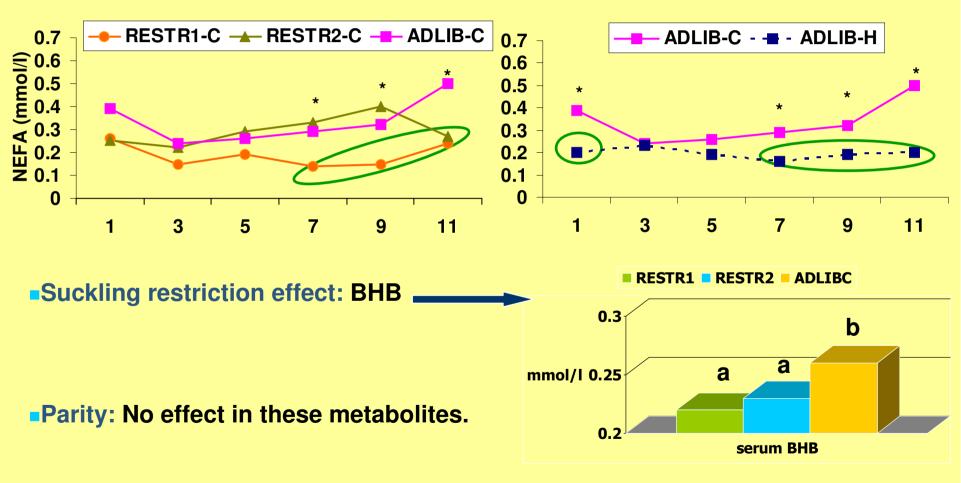
Suckling restriction effect:

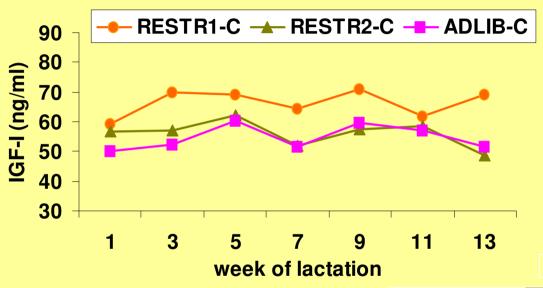

√Tryglicerides and cholesterol did not differ (P>0.10).


Parity effect:

✓ **Tryglicerides** did not differ but **cholesterol** was lower in ADLIBC than in ADLIBH (2.56 vs. 3.08 mmol/l, P<0.05).

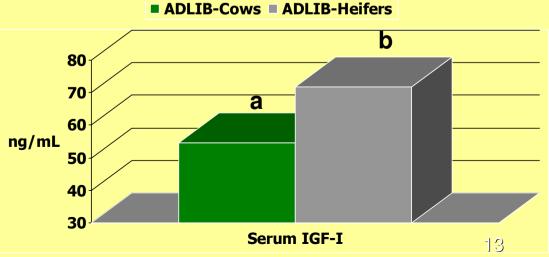
Week effect:


- ✓ Tryglicerides were greater from week 1 through week 7 than afterwards.
- ✓ Cholesterol increased from week 7 of lactation onwards.


RESULTS AND DISCUSSION – Serum NEFA, BHB and urea

Suckling restriction x Week pp and Parity x Week pp interactions: NEFA

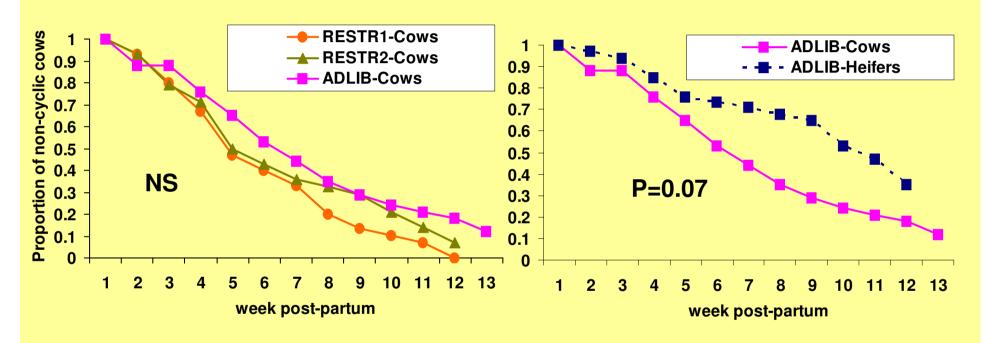
Week effect: Urea → greater at weeks 5-7 than in the rest of lactation (5.07 vs. 4.46 mmol/l, P<0.05)</p>


RESULTS AND DISCUSSION – Serum IGF-I

Suckling restriction: No effect

•Week post-partum: No effect

Parity: lower IGF-I in ADLIBCthan in ADLIBH

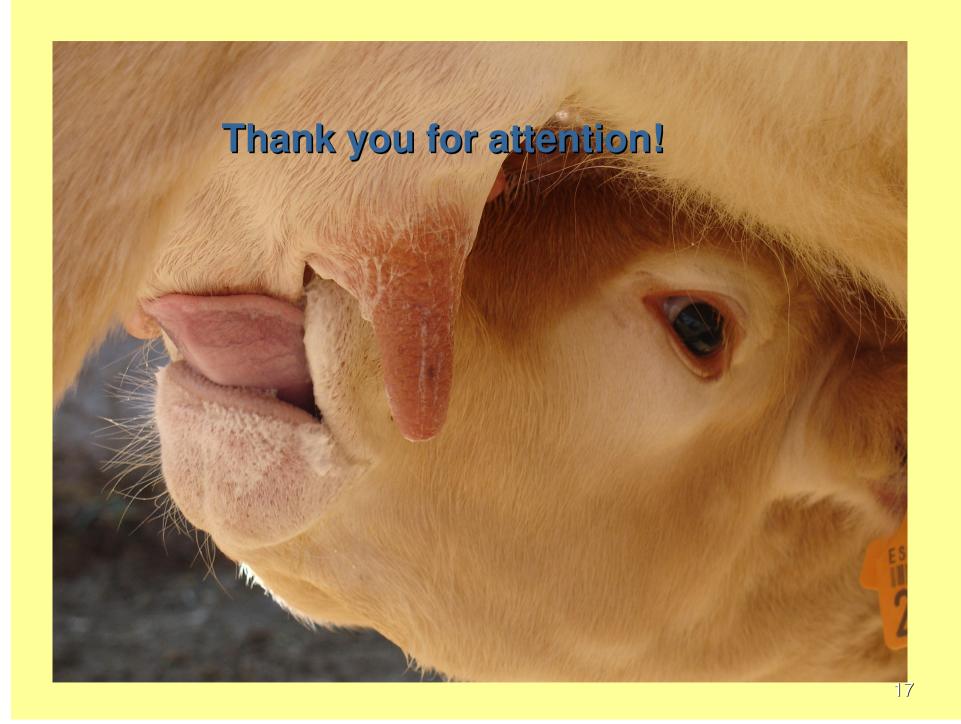


RESULTS AND DISCUSSION – Reproductive performance (1/2)

	Cows			Heifers	<i>P</i> -value	
	RESTR1	RESTR2	ADLIBC	ADLIBH	Treat.	Parity
Interval to 1st pp ovulation, d	46	52	58 ^y	79 ^x	NS	*
1st oestrus cycle duration, d	14	14	14	10	NS	0.10
Interval to 1st pp ovul. (cows with first oestrus detected), d	35	40	49 ^y	74 ^x	NS	0.07
Interval to 1st pp oestrus, d	45	44	56	73	NS	NS

[✓] Parity but not suckling restriction effect on pp anoestrus.

RESULTS AND DISCUSSION – Reproductive performance (2/2)


- **✓ Suckling restriction did not affect the ovarian resumption pattern.**
- **✓ Parity** tended to affect the proportion of cows cycling over lactation.

CONCLUSIONS

- The different productive and metabolic function due to suckling restriction did not trigger remarkable differences in the reproductive parameters of autumn-calving Parda de Montaña cows.
- Adult cows had different metabolic traits compared to heifers. Primiparous cows nursing ad libitum had a delay in the onset of ovarian cyclicity compared to their multiparous counterparts.

IMPLICATIONS

✓ If post-partum diet is not limiting, the reproductive parameters possibly mirror the pre-partum gains throughout the previous grazing season rather than reflect the influence of type of calf management.

