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Introduction

I Classical model of quantitative genetics

yĳ = fĳ + ai + pi + εĳ , εĳ v N
(
0, σ2) (f : fixed effects)

I Structured environmental variance model
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Objective

Problem with the structured environmental variance model

I Skewness is
E
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showing that both skewed and symmetric distributions can

be accommodated.

Can skewed sampling distributions for data lead to

spurious ρ ?

Objective: are results from structured environmental

variance model an artifact of the scale of measurement?



Box-Cox model with genetically structured variance

heterogeneity

I Box-Cox transformation: choose the scale that provides best

fit to data

I Box-Cox model is y (λ)
ĳ | λ, µĳ , σ

2
ĳ v N

(
µĳ , σ

2
ĳ

)
, log σ2

ĳ = µ∗ĳ ,

with µĳ = fĳ + ai + pi ,

µ∗ĳ = f ∗ĳ + a∗i + p∗i ,

and
y (λ)

ĳ =


yλĳ −1
λ (λ 6= 0)

log yĳ (λ = 0)
, holds for yĳ > 0



Choice of scale: Box-Cox transformation

Sampling distribution of untransformed data
P
(
yĳ | µĳ , µ

∗
ĳ , λ

)
= P
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∗
ĳ , λ

)
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ĳ
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Log-posterior, excluding additive constant
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Continued

Choice of prior under y (λ) must be consistent for different values of

λ. Box and Cox suggested

y (λ)
ĳ ≈ k + lλyĳ ,

as basis for choice of priors under y (λ), where

lλ = (J (y , λ))
1
n =

 n∏
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∣∣∣yλ−1
ĳ

∣∣∣
 1

n



Continued

This leads to the following prior specifications:
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Simulation study

Identifiability of λ and ρ. True λ= 1

number of records mean(λ) HPD interval(λ) corr(λ,ρ)

1 0.89 (0.01,1.84) 0.69

2 0.54 (-0.05,1.2) 0.48

3 0.99 (0.45,1.4) 0.35

5 0.78 (0.42,1.12) 0.42

10 0.93 (0.71,1.18) 0.23

rabbit data 0.82 (0.48,1.51) 0.34



Litter size data in rabbits and pigs

I Rabbit litter size data: 2996 litters, average of 3.2 litters per

female, pedigree file: 1281 individuals. Average litter size:

7.22

I Pig litter size data: 9778 litters, average of 2.4 litters per

female, pedigree file: 6437 individuals. Average litter size:

10.28



Results

Posterior means and 95% posterior intervals for variance
components

Models σ2
a σ2

a∗ ρ σ2
p σ2

p∗

Rabbits λ = 1 0.805 0.133 -0.73 0.38 0.052

(0.475,1.216) (0.056,0.23) (-0.89,-0.5) (0.15,0.66) (0.025,0.099)

Rabbits λ = 1.4134 2.59 0.056 0.285 2.858 0.042

(1.47,4.2) (0.027,0.11) (-0.236,0.789) (1.53,4.22) (0.02,0.084)

Pigs λ = 1 1.63 0.071 -0.642 0.52 0.021

(1.24,2.05) (0.038,0.11) (-0.82,-0.45) (0.25,0.83) (0.01,0.038)

Pigs λ = 1.393 8.17 0.037 0.7 4.15 0.017

(5.9,10.63) (0.02,0.06) (0.44,0.98) (2.17,6.03) (0.0078,0.026)



Continued
Statistical support for the model -residual skewness. Upper: Rabbits;
Lower: Pigs
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Prior sensitive analysis (Rabbits)
Top ν = 5, Sσ2

a
= 0.492, Sσ2

a∗
= 0.096, Sσ2

p
= 0.264, Sσ2

p∗
= 0.072

Bottom ν = 5, Sσ2
a

= 0.124, Sσ2
a∗

= 0.024, Sσ2
p

= 0.066, Sσ2
p∗

= 0.018
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Prior sensitive analysis (Pigs)
Top ν = 5, Sσ2

a
= 0.972, Sσ2

a∗
= 0.054, Sσ2

p
= 0.36, Sσ2

p∗
= 0.036

Bottom ν = 5, Sσ2
a

= 0.243, Sσ2
a∗

= 0.0135, Sσ2
p

= 0.09, Sσ2
p∗

= 0.009
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Conditional predictive ordinate (CPO)

One way of assessing global predictive ability of a set of Models

ĈPOĳ = p̂ (yĳ | y−ĳ ,Mr )

=

[
1
T

T∑
t=1

1
p
(
yĳ | θ(t),Mr

)]−1

,

The logarithm of the CPO for Model r (Mr ) is

log
[
ĈPOMr

]
=

n∑
i,j

log [p (yĳ | y−ĳ ,Mr )]

Note: the larger value of log
[
ĈPOMr

]
indicates a better fit of a model.



Continued

Model Rabbits Pigs

λ = 1 -3,930.7 -23,998.0

Mode λ -3,919.5 -15,269.1

Mode λ, σ2
a∗,λ = 0,σ2

p∗,λ = 0 -3,927.3 -15,297.1



Conclusions

I Statements about variance sensitive to presence of heavy tails.

I The conditional distribution of phenotypic data given all model

parameters is normally distributed under the posterior mode of

λ, instead of λ = 1 in both rabbit and pig litter size data.

I The support of additive genetic variance affecting variance is

much weaker under the "correct" scale than under the original

scale.
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