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Introduction
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Question 1:,, Is it possible to generate phenotypes such that a
genetic evaluation hits the known values exactly?“ YES!

Knowledge of variance components is a must for genetic evaluation

Logical question: ,Is it possible to generate phenotypes such that a
variance component estimation hits the known values exactly?“

But: Variance component estimation is a more complex task

Precisely: Nonlinear minimization problems have to be solved by
numerical algorithms



Simplest model: 1-way classification with balanced
data

/

** The mathematical model for the j-th measurement of animal i:

Y, =K +U +e,

— aanimals, randomly selected, each animal has n measurements
— Mis the overall mean

— u, are random animal effects with u ~ N(0,02,)

—  g; are residual effects with e ~ N(0,02.)

— e und u are uncorrelated

(N=a-n)



Simplest model: 1-way classification with balanced
data — the idea

% prescribe variances 0%, and o2, for random effects u and e
% simulate random data u®, e® based on the prescribed variances -> y°

< ANOVA & REML :
E(SSA)=(a-1)(no?,+ 0%,) and E(SSE)=a(n-1) o2, } well known

. , 5 , formulas
% ML: E(SSA)=a(no’ + o7,) and E(SSE)=a(n-1) o°,

% Find a minimum norm correction y for y° such that the prescribed
variances are obtained as an estimator

%Hy—youzemyin wrt SSA, =E(SSA) SSE,=E(SSE)




Simplest model: 1-way classification with balanced
data - ANOVA, REML, ML

%  SSA,:=y'(C-B)y SSE,:=y'(I-Cly
1

1
where BzﬁlNlL C==2Z" (N=n-a)
N

(B=B', B>=B -> B is an ortho-projector as well as C, 1-B,1-C,C-B)

** We couple the constraints by Lagrangian multipliers to the
minimum norm condition, a necessary condition for optimality is
then

8 1 0 2 }\a T }\e T .
@—V(QHV‘V |+ (v (C-Bly —E(SSA)) + = (y (I-C)y—E(SSE))j—o
+* Differentition yields y-y%-A,(C-B)y-A (1-C)y=0

->y%is a linear combination of y, By, Cy



Simplest model: 1-way classification with balanced

data - ANOVA, REML, ML
- y=B,y°+B,By%+B;Cy° with B,+B,+B;=1 (use: B,C ortho-projectors)

\/
0‘0

Minimization problems for ANOVA, ML, REML reduce to a
biguadratic equation -> can be solved directly

< With M=(y° By? Cy°) and B=(B,, B,, B5)" wehave y=MpB

* The constraints result in: SSA = B'M'(C-B)M B=E(SSA)
SSE, = BTMT(1-B)M B=E(SSE)

— three equations for the unknown coefficients B :
1" B=1, (B,+B;)?SSA,=E(SSA), B?,SSE,=E(SSE)

** Choosing the sign of the root such that B=(1,0,0)" when
SSA,=E(SSA), SSE,=E(SSE) -> B, =(E(SSE)/SSE0)%
Bs =-B,+(E(SSA)/SSA,)?
Bz =1- B1' Bg



Simplest model: 1-way classification with balanced
data — simulation of the data

“* Prescribe variances 0%, and o2, for random effects u and e

simulate random data u®, e® based on the prescribed variances -> y°

\/
0‘0

% Evaluate SSE,, SSA, for y°, and E(SSE), E(SSA) by using the prescribed
variance components -> evaluate f3,, B,, B; -> evaluate the
corrected y by using y= 3,y°+B,By%+3,Cy°

s Estimate the variance components fory (SAS, proc mixed f.i.) -> the
solutions are the prescribed variances 62, and 02,



1-way classification with unbalanced data

\/

** The mathematical model for the j-th measurement of animal i:
Yy =H+U +e

— aanimals, randomly selected, animal i has n. measurements

— Mis the overall mean

— u; are random animal effects with u ~ N(0,02,)

— g are residual effects with e ~ N(0,07%,)

— e und u are uncorrelated

(2;n;=N)



1-way classification with unbalanced data - ML

\/

* Use L'=-k log L instead of likelihood L (k=constant factors in L
independent of the parameters) (With ¢ =ngo: —I—Gi)

2Z(ylj IJ) _2 Qin | a(y|

elJ el1

18 1 )
- E;Iog(f,i)JFE(M —a)logo? +

A/

s setting the corresponding partial derivatives to zero (0 L'/ 0,
oL/ 0%, 0L/ 00o?%,)->necessary condition for a minimizer



1-way classification with unbalanced data - ML

\/

* Use L'=-k log L instead of likelihood L (k=constant factors in L
independent of the parameters) (With ¢ =ngo: —I—Gi)

TS 1 1 1 & no’
L'=—>) log(¢. ) +—(M—-a)logo? + )R — n—i2a v _y)2
2 2.109(8)+ 5 (M-a)loga, +5 5 ) {yy —W)* —7 7 2 == (i =)

e | e i=1 €|

A/

s setting the corresponding partial derivatives to zero (0 L'/ 0,
oL/ 0%, 0L/ 00o?%,)->necessary condition for a minimizer

. o' . &n _
T ===0 =) 2 (¥-u)=0
Ol i1
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1-way classification with unbalanced data - ML

N/
0’0

Use L'=-k log L instead of likelihood L (k=constant factors in L
independent of the parameters) (With ¢ =ngo: +0§)

:%i|09(§i)+%(|\/|—a)|090§+ 2Z(yu IJ) _2 2Zaln I a(y'

elJ el1

setting the corresponding partial derivatives to zero (0 L'/ 0 ,
oL/ 0%, 0L/ 00o?%,)->necessary condition for a minimizer

Following the same procedure as for balanced data: prescribe ,
0?,, 62, and simulate u®, e°, evaluate y°

Determine a minimum norm correction for the resulting
yo= pl,, +Zu®+e® such that the ML-estimate of the corrected value y
yields the precribed variances and p-value



1-way classification with unbalanced data - ML

c o e 0 oy e
»*  Thus minimize HV —Y H under the necessary condition for a L
minimizer = constraints

“* We couple the constraints by Lagrangian multipliers A , A, A, to

the minimum norm condition, a necessary condition for optimality
is then

o |1 0\2 n — 1 i v. —11)?
a_ij|:§iz,j:(yij_yij) +)\UZ§—i(yi U)+2)\azi:§i2 (Yi—H)

+%A{Z(yu y.) +Z ' e(y. ﬂ=0

N/

“* N equations for N+3 variables: y;, A , A, A,

N/

** Together with three constraints: N+3 equations for N+3 variables



1-way classification with unbalanced data - ML

*  We substitue z;:=y;-i and e;:=y;-y; in the constraints and minimizing
condition and obtain

(1) Zg—z 0 (2) 22—222 =S, (3) Zeﬁmgzg—;zz

a 2 |
| I

(4) e;+z;+ A §—+)\ LU {eiﬁo;“c’izzi:yﬁ—p Vi, |

(5) Z e, =0 Vi

s* (4), (5) are equivalent to (6), (7) (summing over j in (4), using (5))

(6) z +A §l+)\ §_Z R o ‘;2 =Yi—H Vi

)

(7) & = )\ ——y-y)  Vi]

1-




1-way classification with unbalanced data - ML

n, o’ _
’:’ We set: Xi :é_lzi ) Gi _n—e1 = I S Z(yu | ) Ri :gl(y?_”)

— A ){Zaixf —SZ} =S,

D ) )Y
here X, : DT
W =
| Bi + )\a + )\eai

- asystem of three equations for the 3 unknowns A , A, A,

\/

** no further simplification available -> we have to rely on a numerical
solution of these equations to generate benchmark sets



Summary

L ) 4

The projection method correct simulated phenotypic data such that
the estimated variances are equal to the precribed variances

Balanced case: analytical solution is available

Work in progress: 2-way classification & models with pedigree



Example: 1-way balanced data

\/

% Prescribe variances: 0%, =4 and 0, =16 , u=20.0

% ANOVA/REML: B,=1.142099, 3,=0.242734, B, =-0.38483

o

* ML: B, = 1.142099, B,=0.153351, B, =-0.29545

animal y-original y-corr_anova y-corr_ml measurement

VA DWWNNERR

L)

21.31103230
28.08764151
17.90074808
18.01613969
19.63635102
25.52633969
23.28091046
27.42403753
12.23411615
17.22104056

19.94709525
27.68665567
18.64633517
18.77812384
18.84951758
25.57646933
21.94554247
26.67740487
13.41782504
19.11338776

20.27204752
28.01160794
18.36876571
18.50055439
18.98515726
25.71210901
22.32887414
27.06073653
12.85147090
18.54703362

Use SAS proc mixed with y-corr_ml/_anova (ml/reml option) ->
estimates are the prescribed variances 62, =4 and o2, =16

OO0 NOYUL S WN -
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Example: 1-way balanced data
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original data
ANOVA/REML-corrected
ML-cojfrected
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