

MARTIN-LUTHER-UNIVERSITY HALLE-WITTENBERG Institute of Agricultural and Nutritional Sciences, Group Animal Breeding

60th Annual Meeting of the European Federation of Animal Science Barcelona, Spain August 24-27, 2009. Session 53, Paper 1

Validation of variance component estimation and BLUP software

Generating benchmark problems to evaluate variance component estimation software

M. Wensch-Dorendorf^{1*}, J. Wensch², H. H. Swalve¹

*presenting (monika.dorendorf@landw.uni-halle.de)

¹Institute of Agricultural and Nutritional Sciences, University Halle-Wittenberg ²Institute of Scientific Computing, Technical University Dresden

Introduction

Question 1: " Is it possible to generate phenotypes such that a genetic evaluation hits the known values exactly?" YES!

Knowledge of variance components is a must for genetic evaluation

Logical question: "Is it possible to generate phenotypes such that a variance component estimation hits the known values exactly?"

But: Variance component estimation is a more complex task
Precisely: Nonlinear minimization problems have to be solved by numerical algorithms

Simplest model: 1-way classification with balanced data

The mathematical model for the j-th measurement of animal i:

$$y_{ij} = \mu + u_i + e_{ij}$$

- a animals, randomly selected, each animal has n measurements
- μ is the overall mean
- u_i are random animal effects with $u \sim N(0,\sigma_a^2)$
- e_{ij} are residual effects with $e \sim N(0, \sigma_e^2)$
- e und u are uncorrelated

$$(N=a\cdot n)$$

Simplest model: 1-way classification with balanced data – the idea

- prescribe variances σ_a^2 and σ_e^2 for random effects u and e
- simulate random data u⁰, e⁰ based on the prescribed variances -> y⁰
- **❖ ANOVA** & REML:

E(SSA)=(a-1)(
$$n\sigma_a^2 + \sigma_e^2$$
) and E(SSE)=a(n-1) σ_e^2 well known formulas

- ML: E(SSA)=a($n\sigma_a^2 + \sigma_e^2$) and E(SSE)=a(n-1) σ_e^2 formulas
- Find a minimum norm correction y for y⁰ such that the prescribed variances are obtained as an estimator

$$\left\|\frac{1}{2}\|\mathbf{y}-\mathbf{y}^0\|_2^2 \to \min_{\mathbf{y}} \quad \text{w.r.t} \quad \mathsf{SSA}_{\mathbf{y}} = \mathsf{E}(\mathsf{SSA}) \quad \mathsf{SSE}_{\mathbf{y}} = \mathsf{E}(\mathsf{SSE})$$

Simplest model: 1-way classification with balanced data – ANOVA, REML, ML

SSA_y := y^T(C-B)y SSE_y := y^T(I-C)y
where B =
$$\frac{1}{N} \mathbf{1}_{N} \mathbf{1}_{N}^{T}$$
 C = $\frac{1}{n} ZZ^{T}$ (N = n·a)

 $(B=B^T, B^2=B \rightarrow B \text{ is an ortho-projector as well as C, I-B,I-C,C-B})$

We couple the constraints by Lagrangian multipliers to the minimum norm condition, a necessary condition for optimality is then

$$\frac{\partial}{\partial y} \left(\frac{1}{2} \left\| y - y^0 \right\|_2^2 + \frac{\lambda_a}{2} \left(y^T (C - B) y - E(SSA) \right) + \frac{\lambda_e}{2} \left(y^T (I - C) y - E(SSE) \right) \right) = 0$$

♦ Differentition yields $y-y^0-λ_a(C-B)y-λ_e(I-C)y=0$ -> y⁰ is a linear combination of y, By, Cy

Simplest model: 1-way classification with balanced data – ANOVA, REML, ML

- \rightarrow y= β_1 y⁰+ β_2 By⁰+ β_3 Cy⁰ with β_1 + β_2 + β_3 =1 (use: B,C ortho-projectors)
- Minimization problems for ANOVA, ML, REML reduce to a biquadratic equation -> can be solved directly
- With M=(y⁰, By⁰, Cy⁰) and β=(β_1 , β_2 , β_3)^T we have y=M β
- The constraints result in: $SSA_y = \beta^T M^T(C-B)M \beta = E(SSA)$ $SSE_y = \beta^T M^T(I-B)M \beta = E(SSE)$
 - \rightarrow three equations for the unknown coefficients β: $\mathbf{1}^{\mathsf{T}} \beta = \mathbf{1}$, $(\beta_1 + \beta_3)^2 SSA_0 = E(SSA)$, $\beta_1^2 SSE_0 = E(SSE)$
- Choosing the sign of the root such that $\beta = (1,0,0)^T$ when $SSA_0 = E(SSA)$, $SSE_0 = E(SSE)$ -> $\beta_1 = (E(SSE)/SSE_0)^{\frac{1}{2}}$ $\beta_3 = -\beta_1 + (E(SSA)/SSA_0)^{\frac{1}{2}}$ $\beta_2 = 1 \beta_1 \beta_3$

Simplest model: 1-way classification with balanced data – simulation of the data

- Prescribe variances σ_a^2 and σ_e^2 for random effects u and e
- simulate random data u⁰, e⁰ based on the prescribed variances -> y⁰

Evaluate SSE_0 , SSA_0 for y^0 , and E(SSE), E(SSA) by using the prescribed variance components -> evaluate β_1 , β_2 , β_3 -> evaluate the corrected y by using $y = \beta_1 y^0 + \beta_2 B y^0 + \beta_3 C y^0$

Estimate the variance components for y (SAS, proc mixed f.i.) -> the solutions are the prescribed variances σ_a^2 and σ_e^2

The mathematical model for the j-th measurement of animal i:

$$y_{ij} = \mu + u_i + e_{ij}$$

- a animals, randomly selected, animal i has n_i measurements
- μ is the overall mean
- u_i are random animal effects with $u \sim N(0,\sigma_a^2)$
- e_{ij} are residual effects with $e \sim N(0, \sigma_e^2)$
- e und u are uncorrelated

$$(\Sigma_i n_i = N)$$

• Use L'=-k log L instead of likelihood L (k=constant factors in L independent of the parameters) $\left(\text{with }\xi_i = n_i\sigma_a^2 + \sigma_e^2\right)$

$$L' = \frac{1}{2} \sum_{i=1}^{a} log(\xi_i) + \frac{1}{2} (M - a) log \sigma_e^2 + \frac{1}{2\sigma_e^2} \sum_{i,j} (y_{ij} - \mu)^2 - \frac{1}{2\sigma_e^2} \sum_{i=1}^{a} n_i \frac{n_i \sigma_a^2}{\xi_i} (\overline{y}_i - \mu)^2$$

setting the corresponding partial derivatives to zero (∂ L'/ ∂ μ , ∂ L'/ ∂ σ^2_a , ∂ L'/ ∂ σ^2_e)-> necessary condition for a minimizer

• Use L'=-k log L instead of likelihood L (k=constant factors in L independent of the parameters) $\left(\text{with }\xi_i = n_i\sigma_a^2 + \sigma_e^2\right)$

$$L' = \frac{1}{2} \sum_{i=1}^{a} log(\xi_i) + \frac{1}{2} (M - a) log \sigma_e^2 + \frac{1}{2\sigma_e^2} \sum_{i,j} (y_{ij} - \mu)^2 - \frac{1}{2\sigma_e^2} \sum_{i=1}^{a} n_i \frac{n_i \sigma_a^2}{\xi_i} (\overline{y}_i - \mu)^2$$

- setting the corresponding partial derivatives to zero (∂ L'/ ∂ μ , ∂ L'/ ∂ σ^2_a , ∂ L'/ ∂ σ^2_e)-> necessary condition for a minimizer
- $\frac{\partial L'}{\partial \mu} = 0 \quad \Rightarrow \sum_{i=1}^{a} \frac{n_i}{\xi_i} (\overline{y}_i \mu) = 0$
- $\frac{\partial L'}{\partial \sigma_a^2} = 0 \implies \sum_{i=1}^a \frac{n_i^2}{\xi_i^2} (\overline{y}_i \mu)^2 = S_1 := \sum_{i=1}^a \frac{n_i}{\xi_i}$

• Use L'=-k log L instead of likelihood L (k=constant factors in L independent of the parameters) $\left(\text{with }\xi_i = n_i\sigma_a^2 + \sigma_e^2\right)$

$$L' = \frac{1}{2} \sum_{i=1}^{a} log(\xi_i) + \frac{1}{2} (M - a) log \sigma_e^2 + \frac{1}{2\sigma_e^2} \sum_{i,j} (y_{ij} - \mu)^2 - \frac{1}{2\sigma_e^2} \sum_{i=1}^{a} n_i \frac{n_i \sigma_a^2}{\xi_i} (\overline{y}_i - \mu)^2$$

- setting the corresponding partial derivatives to zero (∂ L'/ ∂ μ , ∂ L'/ ∂ σ^2_a , ∂ L'/ ∂ σ^2_e)-> necessary condition for a minimizer
- Following the same procedure as for balanced data: prescribe μ , σ^2_{a} , σ^2_{e} and simulate u^0 , e^0 , evaluate y^0
- Determine a minimum norm correction for the resulting $y^0 = \mu 1_M + Zu^0 + e^0$ such that the ML-estimate of the corrected value y yields the precribed variances and μ-value

- Thus minimize $\|y y^0\|$ under the necessary condition for a L' minimizer = constraints
- We couple the constraints by Lagrangian multipliers λ_{μ} , λ_{e} , λ_{a} to the minimum norm condition, a necessary condition for optimality is then

$$\begin{split} &\frac{\partial}{\partial y_{ij}} \left[\frac{1}{2} \sum_{i,j} (y_{ij} - y_{ij}^0)^2 + \lambda_{\mu} \sum_{i} \frac{n_{i}}{\xi_{i}} (\overline{y}_{i} - \mu) + \frac{1}{2} \lambda_{a} \sum_{i} \frac{n_{i}^2}{\xi_{i}^2} (\overline{y}_{i} - \mu)^2 \right. \\ &\left. + \frac{1}{2} \lambda_{e} \left[\sum_{i,j} (y_{ij} - \overline{y}_{i})^2 + \sum_{i} \frac{n_{i} \sigma_{e}^4}{\xi_{i}^2} (\overline{y}_{i} - \mu)^2 \right] \right] = 0 \end{split}$$

- N equations for N+3 variables: y_{ij} , λ_{μ} , λ_{e} , λ_{a}
- ❖ Together with three constraints: N+3 equations for N+3 variables

• We substitue $z_i := \overline{y_i} - \mu$ and $e_{ij} := y_{ij} - \overline{y_i}$ in the constraints and minimizing condition and obtain

(1)
$$\sum_{i} \frac{n_{i}}{\xi_{i}} z_{i} = 0$$
 (2) $\sum_{i} \frac{n_{i}^{2}}{\xi_{i}^{2}} z_{i}^{2} = S_{1}$ (3) $\sum_{i,j} e_{ij}^{2} + \sigma_{e}^{4} \sum_{i} \frac{n_{i}}{\xi_{i}^{2}} z_{i}^{2} = S_{2}$

$$(5) \sum_{j} e_{ij} = 0 \qquad \forall i$$

4), (5) are equivalent to (6), (7) (summing over j in (4), using (5))

$$(6) \ \ z_{i} + \lambda_{\mu} \frac{1}{\xi_{i}} + \lambda_{a} \frac{n_{i}}{\xi_{i}^{2}} z_{i} + \lambda_{e} \sigma_{e}^{4} \frac{1}{\xi_{i}^{2}} z_{i} = \overline{y}_{ij}^{0} - \mu \qquad \forall i$$

(7)
$$e_{ij} = \frac{1}{1 - \lambda_e} (y_{ij}^0 - \overline{y}_i^0) \quad \forall i, j$$

***** We set:
$$X_i = \frac{n_i}{\xi_i} Z_i$$
, $\alpha_i = \frac{\sigma_e^4}{n_i}$, $\beta_i = \frac{\xi_i}{n_i}$, $S_4 = \sum_{i,j} (y_{ij}^0 - \overline{y}_i^0)^2$, $R_i = \xi_i (\overline{y}_i^0 - \mu)$

$$\begin{split} \sum_i x_i &= 0 \\ \sum_i x_i^2 &= S_1 \end{split}$$

$$(1-\lambda_e)^2 \bigg[\sum_i \alpha_i x_i^2 - S_2 \bigg] = S_4 \end{split}$$
 where
$$x_i \coloneqq \frac{R_i - \lambda_\mu}{\beta_i + \lambda_a + \lambda_e \alpha_i}$$

- \rightarrow a system of three equations for the 3 unknowns λ_{μ} , λ_{a} , λ_{e}
- no further simplification available -> we have to rely on a numerical solution of these equations to generate benchmark sets

Summary

The projection method correct simulated phenotypic data such that the estimated variances are equal to the precribed variances

Balanced case: analytical solution is available

Unbalanced case: use high accuracy numerical solution

Work in progress: 2-way classification & models with pedigree

Example: 1-way balanced data

- Prescribe variances: $\sigma_a^2 = 4$ and $\sigma_e^2 = 16$, $\mu = 20.0$
- \Leftrightarrow ANOVA/REML: $β_1$ = 1.142099, $β_2$ =0.242734, $β_3$ =-0.38483
- \clubsuit ML: $β_1$ = 1.142099, $β_2$ =0.153351, $β_3$ =-0.29545

animal	y-original	y-corr_anova	y-corr_ml	measurement
1	21.31103230	19.94709525	20.27204752	1
1	28.08764151	27.68665567	28.01160794	2
2	17.90074808	18.64633517	18.36876571	3
2	18.01613969	18.77812384	18.50055439	4
3	19.63635102	18.84951758	18.98515726	5
3	25.52633969	25.57646933	25.71210901	6
4	23.28091046	21.94554247	22.32887414	7
4	27.42403753	26.67740487	27.06073653	8
5	12.23411615	13.41782504	12.85147090	9
5	17.22104056	19.11338776	18.54703362	10

• Use SAS proc mixed with y-corr_ml/_anova (ml/reml option) -> estimates are the prescribed variances $\sigma_a^2 = 4$ and $\sigma_e^2 = 16$

Example: 1-way balanced data

