EAAP, Barcelona 2009 - Session G53

Estimation of variance components for binary threshold models

Freddy Fikse 1, Lars Rönnegård 1,2

- ¹ Dept. of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- ² Statistics unit, Dalarna University, Borlänge, Sweden

Aim

Investigate bias in variance components for binary threshold models for two animal breeding examples.

Background

- Penalized quasi-likelihood (PQL) common estimation technique for threshold models
- PQL is implemented in widely used software packages
- Severe bias in PQL-estimates of variance components reported in statistical literature

Conclusions

- MCMC (posterior mode) gave unbiased estimates, except when data contained little information (low h2, low frequency)
- PQL both over- and underestimation; depending on data structure

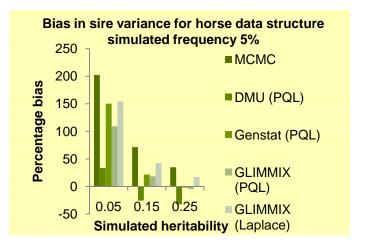
Methods

Five software packages to estimate variance components:

- DMUAI (uses PQL);
- ASREML (uses PQL);
- GLIMMiX (PQL or Laplace);
- GENSTAT (uses PQL);
- MCMC.

Bias in sire variance for cattle data structure simulated frequency 50% 0.0 -2.0 -4.0 -6.0 -8.0 -10.0 Simulated heritability

Materials


- Monte Carlo simulation of binary response; frequency levels 5 and 50%.
- Dairy cattle data structure:
 - 90 thousand records, 760 sires.
 - Random: sire, herd-year; Fixed: age at calving, calving month.
- Horse data structure:
 - 1250 records, 33 sires.
 - Random: Sire;

Fixed: birth year, gender, region.

Results

- Cattle data structure:
 - PQL always biased;
 - MCMC unbiased.
- Horse data structure:
 - High simulated freq (50%): no significant bias;
 - Low simulated freq (5%): no clear trend.

