Comparison of grass species influence on dry matter degradability and its prediction using chemical composition

F. Jančík, P. Homolka, V. Koukolová Institute of Animal Science, Prague, Czech Republic

Session: 52 - "Animal Nutrition Free Communications" ;Abstract number: 3770 ;E-mail address: jancik.filip@vuzv.cz

CONCLUSIONS

- » the best ED_{DM} was determined for Lolium perenne
- » the best ED_{DM} predictor was NDF
- » using of two predictors increased equations accuracy level (R²)
- » calculated equations are useful tool for practical use
- » ensiling process had not significant influence on dry matter rumen degradability

OBJECTIVES

- compare the most widely used grass species conserved Ι. by ensiling process according to dry matter rumen degradability parameters
- II. evaluate the regression equations for prediction of effective dry matter rumen degradability (ED_{DM}) of grass silages based on chemical composition of estimated samples
- III. estimate the effect of ensiling process on dry matter degradability parameters

MATERIAL AND METHODS

Tested grasses:

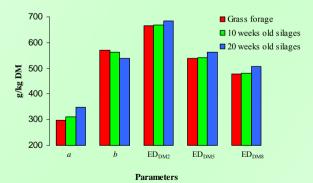
- » Dactylis glomerata L.
- » Phleum pratense L.
- » Lolium perenne L.
- » Festuca arundinacea S.
- » grass hybrid Felina

Ruminal DM degradability:

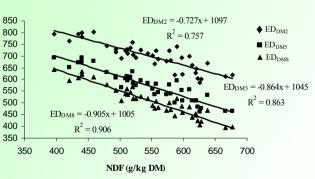
- » estimated by in sacco technique
- » used two Holstein steers
- » pore size of nylon bags was 42 µm
- » incubation times were 0, 6, 12, 24, 48, 72, 96 hours

Ensiling process:

- » grass forages were wilted, cut to 1 − 1.5 cm long pieces and ensiled without any additives into hermetic glass vessels (3 litre capacity)
- » vessels were stored in dark and cool room for 10 and 20 weeks


Determined degradability parameters:

- a = portion of DM solubilized at initiation of incubation (time 0)
- b = fraction of DM potentially degradable in the rumen


c = rate constant of disappearance of fraction b ED_{DM2} , ED_{DM5} and ED_{DM8} = effective degradability of DM calculated for each ingredient assuming rumen solid outflow rates of 0.02, 0.05 and 0.08 h⁻¹, respectively.

RESULTS

The influence of ensiling on degradability parameters

Prediction of ED_{DM} by NDF

Comparison of species by parameters of rumen DM degradability of grass silages

Prediction of ED_{DM} using multiple regression

degradability of grass silages								RMSE	R ²	Р
Grass species	<i>a</i> ¹	b^1	c^2	ED _{DM2} ¹	ED _{DM5} ¹	ED _{DM8} ¹	Equation ED _{DM2}			
Dactylis glomerata	316.2 ^{ab}	553.6ª	0.0416 ^a	687.4ª	565.8ab	504.4 ^{ab}	y = 1083 + 0.464 CF - 0.962 NDF	19.66	0.892	< 0.0001
Phleum pratense	245.9ac	652.4abc	0.0375 ^b	669.0 ^b	523.9ac	453.1ac	Equation ED _{DM5}			
Lolium perenne	365.4 ^{ad}	561.5 ^b	0.0451 ^{bc}	753.2 ^{ab}	631.1 ^{acd}	567.7 ^{ad}	y = 1035 + 0.337 CF - 1.035 NDF	18.75	0.920	< 0.0001
Festuca arundinacea	369.3bc	524.7°	0.0390°	711.9 ^{bc}	596.0 ^{cd}	538.9bc	Equation ED _{DM8}			
Hybrid Felina	290.0 ^{cd}	579.5°	0.0344 ^{ac}	655.3ac	525.5 ^{bd}	463.9 ^{bd}	y = 998.3 + 0.220 CF - 1.017 NDF	18.13	0.929	0.0012
¹ g/kg DM; ² h ⁻¹ ; ^{a,b,c,d} Within a column means with same superscript letters are different (P < 0.05).							RMSE = Root mean square error; R^2 = determination coefficient; P = probability.			

This research was supported by the Ministry of Agriculture (grants MZE 0002701403 and MZE 0002701404).

DMD

EDDM (g/kg