

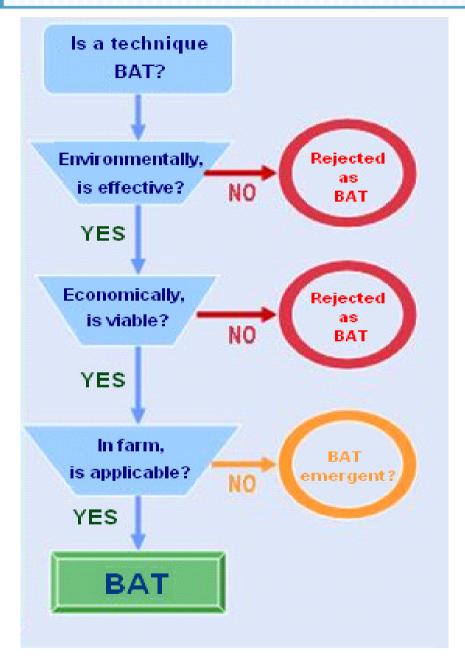
Influence of soya bean meal and synthetics amino acids prices in the cost of nutritional Best Available Techniques in Spain

Carlos Piñeiro¹, G. Montalvo², M. A. García² and M. Bigeriego³

¹PigCHAMP Pro Europa: ²Tragsega;

³Spanish Ministry of the Environment and Rural and Marine Affairs

60th Annual EAAP Meeting


Barcelona, 24-28 August 2009

Introduction

Council Directive 96/61/EC

- ✓ **Best Available Techniques** (**BAT**) proposed in the BREF (2003):
 - Techniques shall include both the technology used and the way in which the installation is designed, built, maintained, operated and decommissioned.
 - Available [...] under economically and technically viable conditions, taking into consideration the costs and advantages.
 - Best shall mean most effective in achieving a high general level of protection of the environment as a whole."

Introduction

Therefore, it is necessary to have a common methodology to calculate cost of abatement techniques to decide if a technique is BAT or not.

Objective

Spanish Ministry of the Environment and Rural and Marine Affairs developed a calculation on cost of every BAT, because define the most cost-effective methods for reducing ammonia emissions from Spanish farms.

Methodology

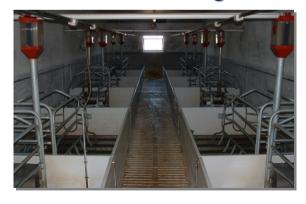
The calculation have been carried out according to the methodology set out in the IPPC Reference Document on Best Available Techniques for intensive Rearing of Poultry and Pigs

- Current costs should be used for all calculations
- Capital expenditure should be annualised over the economic life of the investment (deducting any grants).
- Annual running costs should be added to the annualised cost of capital.
- Changes in performance should be taken into account
- ✓ The calculations are based on an amortisation rate of 5% (current rate of interest commonly incurred by farmers).

R

Categories of techniques

Techniques may be described by one of the following categories:


1. Feed

3. Manure or slurry storage

2. Housing

4. Application of manure or slurry to land

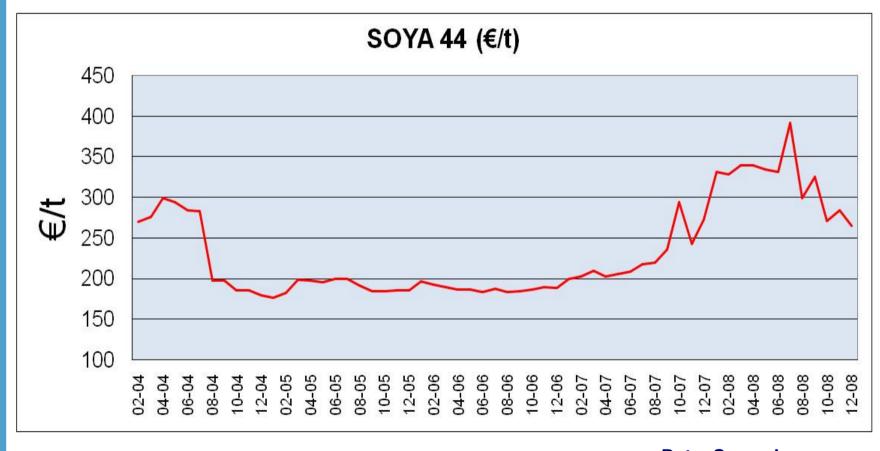
Units used for assessing cost

Units proposed and included in the BREF (2003)

Category	Units	
Feed	€ per place per	
Housing	year	
Manure or slurry storage	€ per m³ or tonnes per year	
Manure or slurry land application		

Units used for assessing cost

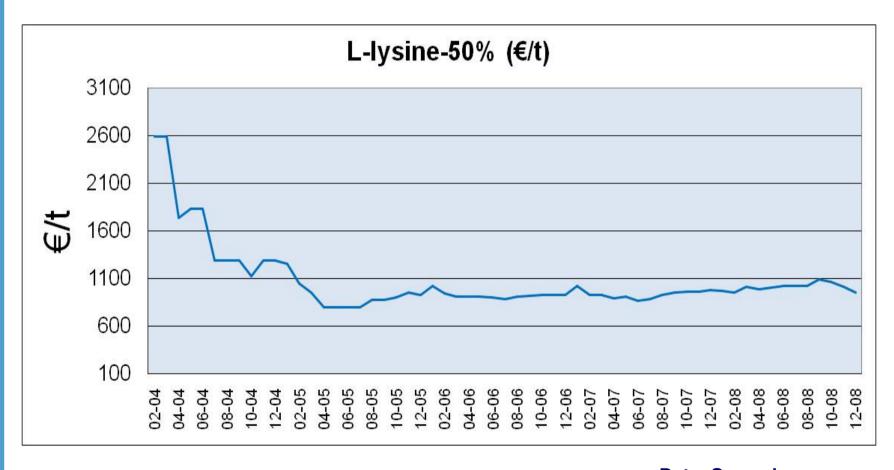
Category	Units	
Feed	€ per place per	
Housing	year	€ per tonnes pig produced
Manure or slurry storage	€ per m³ or tonnes per year	
Manure or slurry land application		

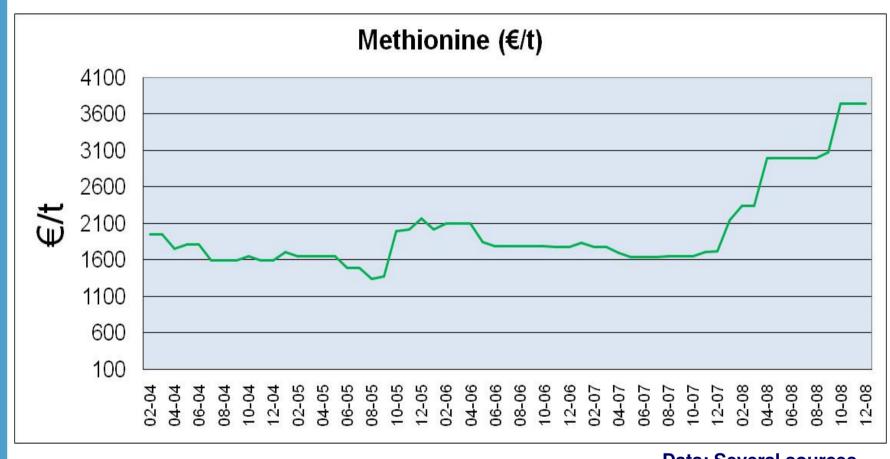

Unit proposed to be included in the new BREF

Units used for assessing cost

- ✓ Strong requirement from the Spanish producing sector.
- ✓ But also, it is very logical.
- ✓ Cost are also expressed as
 € per tonnes pig produced
- ✓ Assumptions for the calculations:
 - Equivalences:
 - 1 productive sow produces 20.00 pigs marketed/year
 - 1 gestating place produces 26.60 pigs marketed/year
 - 1 lactating place produces 80.00 pigs marketed/year
 - 1 nursery place produces 5.79 pigs marketed/year
 - 1 grower place produces 2.94 pigs marketed/year
 - 1 marketed pig produces 1.25 m³ of slurry
 - Pig marketed = 100 kg body weight

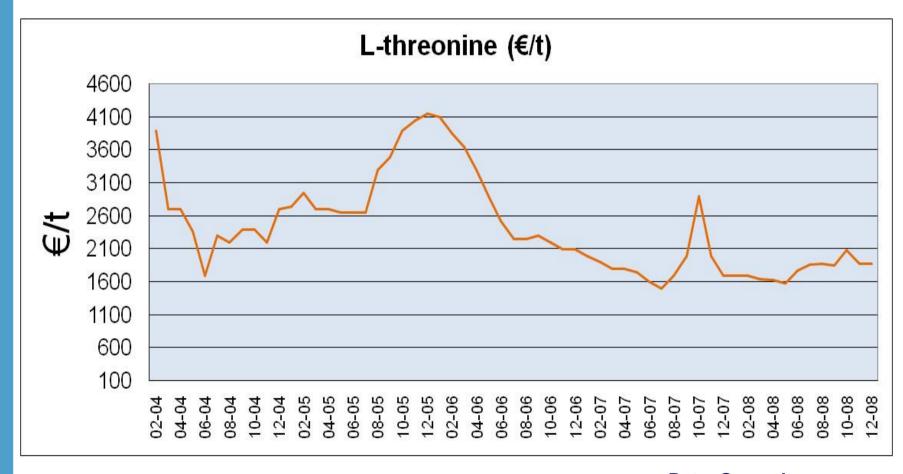
Prices evolution


Soya bean meal. Price evolution 2004-2008


Prices evolution

L-lysine-50%. Price evolution 2004-2008

Prices evolution


DL Methionine. Price evolution 2004-2008

G

Prices evolution

DL Threonine. Price evolution 2004-2008

Diet formulation

Diet formulation in the <u>example</u> for calculations Reference system (RS) vs low protein diet (LPD)

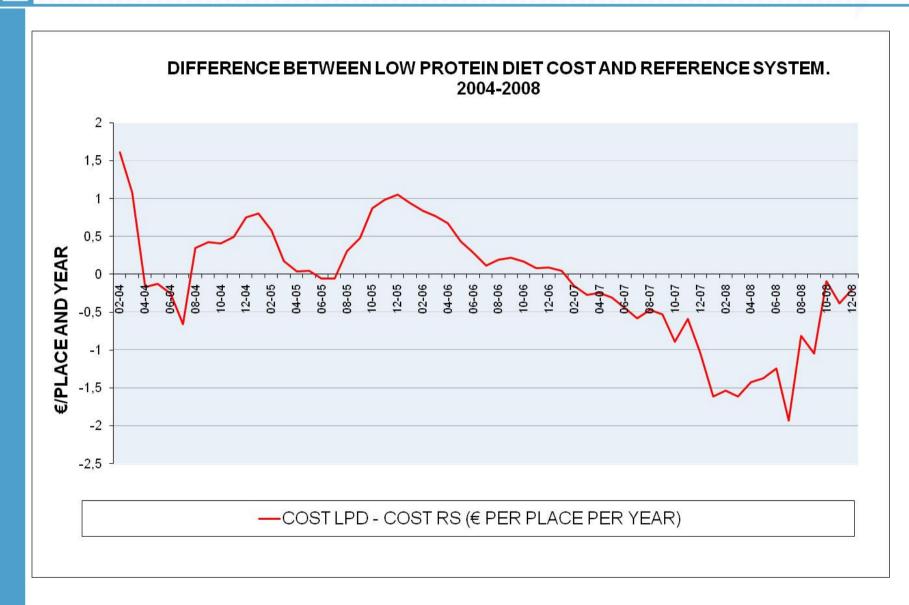
- ✓ Reference system:
 - 19.0% CP for pigs between 20-60 kg
 - 16.0% CP for pigs between 60-100 kg
- ✓ Low protein diet:
 - 16.5% CP for pigs between 20-60 kg
 - 13.5% CP for pigs between 60-100 kg

Assumptions for the calculations

- ✓ Technical description:
 - Building capacity: 720 places
- ✓ Assumptions for the calculations:
 - Feed consume 20-60 kg: 1.4 kg/pig and day
 - Feed consume 60-100 kg: 2.2 kg/pig and day
 - 20-60 kg: 55 days
 - 60-100 kg: 45 days
 - Ratio occupation building: 85%
 - Cleaning and disinfections: 10 days

Assumptions for the calculations

- ✓ Equivalences:
 - Occupation days (20 100 kg) = 124 days
 - Nº de rotations per year: 365/124 = 2,94 rotations per place per year
 - Marketed pig = 100 kg body weight
 - Production per place: 294 kg pig per place per year



Diet formulation

Diet formulation in the example for calculations Reference system (RS) vs low protein diet (LPD)

Diet formulation: kg per tonne						
	RS GROWTH FEED	LPD GROWTH FEED	RS FINISH FEED	LPD FINISH FEED		
SOYA	161.0	120.5	141.0	83.1		
LYSINE	4.2	8.5	3.1	7.4		
METHIONINE	0.1	1.4	0.0	1.5		
THREONINE	0.0	1.6	0.0	1.5		

Extra cost for LPD

Extra cost for LPD

DIFFERENCE BETWEEN LOW PROTEIN DIET COST AND REFERENCE SYSTEM. 2004-2008

—COST LPD - COST RS (€ per t Pig Produced)

G

Conclusions

- ✓ In the period 2004-2006 soya average price was 200 €/ tonne and this affected the formulation cost of low protein diets.
- ✓ Since being protein more expensive (up 280 €/tonne in 2007-2008 period) the use of low protein diets supposed an average saving of about 0.77 € per place and year.
- ✓ Therefore, when soya price decreased, low protein diets technique could be not so economically favorable.
- Considering low protein diet as BAT will depend on soya bean meal and synthetics amino acids prices.

Implications

- ✓ We don't know what is 'Available under economically viable conditions', but we think that it necessary to know the extra-cost of BAT application.
- ✓ In the case of low-protein diets, the cost for its application highly depends on the market conditions.
- ✓ Therefore, we propose this BAT can not became established compulsory for the farmer in the new BREF.
- ✓ The rest of BAT are currently being economically analysed in the same way.

