

Ammonia and nitrous oxide emissions following land application of high and low nitrogen pig manures to winter wheat at three growth stages

> EAAP Conference Barcelona, Spain August 2009

G. Meade, K. Pierce, J. V. O' Doherty, C. Mueller, G. Lanigan & T. Mc Cabe

grainne.meade@ucdconnect.ie

Background

- Agriculture in Ireland 26.8% of GHG emissions
 - GHG almost transparent to solar radiation <u>but</u> absorb & emit infrared radiation. Thus, GHG trap heat within the surfacetroposphere system causing global warming
 - N₂O, CH₄, CO₂, sulphur hexafluoride, HFC's, PFC's
- Kyoto Protocol reduction of GHG emissions
 - Europe has chosen to reduce emissions by 8%
 - Ireland has to be within +13% of 1990 levels by 2012
 - Beyond 2012, 20% reduction of GHG on 1990 levels by 2020
- Agriculture in Ireland 98% of ammonia emissions
 - Atmospheric deposition causing eutrophication & acidification of sensitive eco-systems
 - Gothenburg Protocol to reduce NH₃ by 8% based on 1990 levels for 2010

Background to this Project

Introduction

- Pig manure can be a valuable nutrient source in tillage crop production
 - Benefits include:
 - Increased soil organic matter content
 - Reduced N, P, K costs
 - Reduced trace element deficiency problems

- Significant loss through leaching, denitrification and volatilisation can reduce beneficial effects
- Need to quantify the losses of nitrogen as ammonia and nitrous oxide for meeting Kyoto & Gothenburg targets but also to quantify N losses for farmers

Nitrous Oxide & Ammonia Emissions

- Denitrification: Microbial reduction of nitrate to di-nitrogen gas
 - Anaerobic conditions Denitrifying bacteria (e.g *Pseudomonas*)
- Nitrification: Oxidation of ammonium to nitrate
 - Aerobic conditions Nitrifying bacteria (e.g Nitrosomonas, Nitrobacter)
- Current nitrous oxide content in the air is **319 ppb**
- Increasing at a rate of 0.25% per year
- 300 times greater global warming potential than CO₂
- Estimated 16.8kg N/ha/yr lost as N₂O in Ireland

- With ammonia the key issue is the loss of $\rm NH_3$ to the air after manure application
- Rate of ammonia volatilisation depends on:
 - Weather conditions, Soil characteristics, Mode of application, Manure characteristics

Hypothesis

Pigs fed low CP diet

Low Urea **Pig** Manure

Applied by band spreader

Applied to wheat at later growth stages

Canopy more dense/ increased N requirement

Ammonia/Nitrous Oxide emissions reduced

Reduced global warming

Environmental Benefits

Diets for Manure Production

• Ideal protein concept

- Feed that yields all of the essential A.A in proper proportions for growth & maintenance after digestion
- 2 pig diets 16% vs. 23% CP
 - HCP = 65% wheat, 31% soya
 - LCP = 83% wheat, 12% soya

- Low protein diet meeting protein requirements
 - Added synthetic A.A to prevent deficiency (1%)
- High protein diet supplying excess protein
 - Nitrogen excreted in urine more N available for volatilisation

Manure Production & Crop Growth

- 2 groups of 85 pigs were housed in a grower/finisher house with 2 separate manure storage tanks
- Pigs entered the house at 35kg and were fed for approximately 12 weeks
- Manure applied at 3 spread dates (SD)
 SD 1 Mid tillering GS 25
 SD 2 Stem extension GS 31-32
 SD 3 Flag Leaf GS 37-39
- Manure was applied by use of band spreading equipment
- ↑ Crop canopy as G.S increases
- Micro-climate created
- Increased requirement for N

Micrometeorological Technique

 Use of passive flux samplers to measure the ammonia concentration in air

- Manure spread & mast immediately erected in the centre of plot
- Shuttles place at 5 heights 0.2m
 0.4m, 0.8m, 1.5m and 3.0m
- 7 sampling times 1, 3, 6, 24, 48, 96
 & 168 hours post spreading
- Background mast for measuring the background levels of ammonia in the area surrounding the trial plots

Nitrous Oxide Measurement

- Static chamber technique
- Stainless steel chambers 0.41m*0.41m
- Measure flux of N₂O over a given time period
- Sampled at 0, 15 & 30mins

Results

Grain Yield & Crop N Uptake

Nitrous Oxide - SD 1

Days After Spreading

Nitrous Oxide - SD 2

Nitrous Oxide - SD 3

Spread Date

Ammonia Volatilisation

3

Sample Time P<0.0001

Hours Post Manure Application

Ammonia Volatilisation

Hours Post Manure Application

Ammonia SD 1-3

Overview – Results

- Manure application increased crop yield & crop nitrogen uptake
- HCP manure had consistently higher emissions than the LCP manure
- Ammonia and nitrous oxide emissions decreased as the crop advanced
- 93-96% of ammonia emissions occurred in the first 24hrs
- Total nitrogen lost as ammonia ~6.5kgN/ha over the 1 week measurement period
- Total nitrogen lost as nitrous oxide ~0.626kgN/ha in 30 days