

Session 44 – n'4609

Characterizing of grassland use for livestock farms using agricultural census databases

V. Thénard¹, S. Jalabert², O. Thérond¹ ¹ INRA; UMR Agro systems and Territorial Development ² ENITA; UF Agro systems and forest

vincent.thenard@toulouse.inra.fr

about biodiversity...

- Biodiversity preservation has to be taken into account in agricultural system assessment
- In the framework of grazing livestock systems, we have to consider the protection of grassland diversity
- *Grassland diversity:
 - > Functional diversity (grazing, cutting, precocity...)
 - Specific diversity

about grassland use...

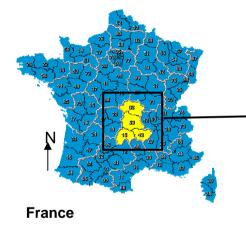
Grasslands acknowledged as multifunctional role

The characterization of grassland management would permit to assess the impacts on the diversity

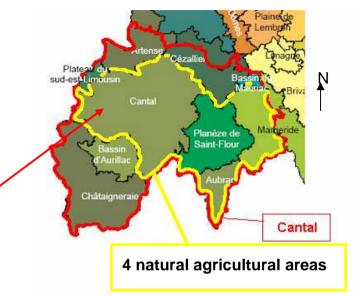
Intensification of livestock production

s decrease in grassland use

♦ loses of diversity

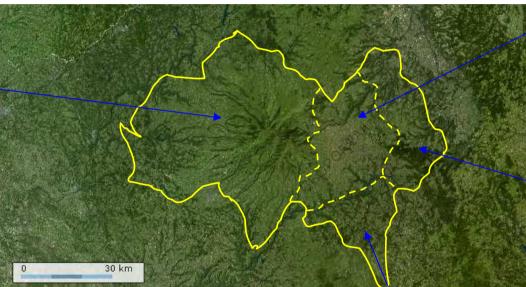

Aims of this work

- To represent and characterize diversity of grassland use management for large scale agricultural areas
- To use a farm typology on grassland use management in regional diagnostic
- To propose an alternative of works which be done for a small group of farms and needs interviews with the farmers


Set to the set of t

Study area

4-natural agricultural areas covering 2232 km² *Monts du Cantal, Planeze, Aubrac, Margeride*



Study area

Monts du Cantal

Planeze

Margeride

Hilly, upland, mountainous areas 650-1800 m above sea

Rainfalls 1000-1800 mm/year

volcanic and granitic soils

Aubrac

Study area

	Farming systems				
%	Dairy cattle farms	Suckler cattle farms	Mixt cattle farms	Sheep & goat farms	Total NAA
Monts du Cantal	15,0	18,1	13,7	0,6	47,4
Planèze	14,6	6,8	3,6	1,0	26,0
Margeride	12,6	2,3	2,6	1,3	18,8
Aubrac	0,3	7,0	0,3	0,2	7,8
Total FS	42,5	34,2	20,2	3,2	100,0

sources : DATAGRESTE – RGA 2000

THE R. L

- Data extracted from 2900 farms
- *In first time 39 criteria were analysed
- Important statistical work reducing the number to 7 important criteria
- Principal Component Analysis
- Hierarchical classification with Ward method
- *Farms' typology based on grassland use

✤ 4 Single criteria

- Main fodder area / Usable agricultural area (MFA)
- Sown grassland area / Main fodder area (SGA)
- ≻Grass silage area / Grassland area (GSA)

>Stocking rate (STR)

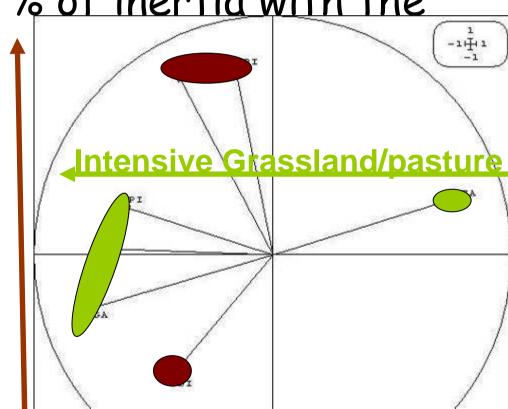
- Building Synthetic criteria to describe specific diversity of grassland
 - > Simpson diversity index: Es = $1 \sum (xi)^2$
 - Agricultural Census define 3 sorts of grassland : Rough grazing (rg) Pasture (pg) Sown grassland (sg)
 Agricultural Census define 3 sorts of grassland : *specific diversity is decreased*
 - Grassland diversity index (GDI):
 GDI = 1 (X_{rg}^{3 +} X_{pg}^{2 +} X_{sg})

Building 2 Synthetic criteria
 to describe diversity intensification
 Milk productivity index (DPI)
 Meat productivity index (MPI)

Scalculated as each farm production in comparison of the production's average of each farming-system-group

Results: PCA data

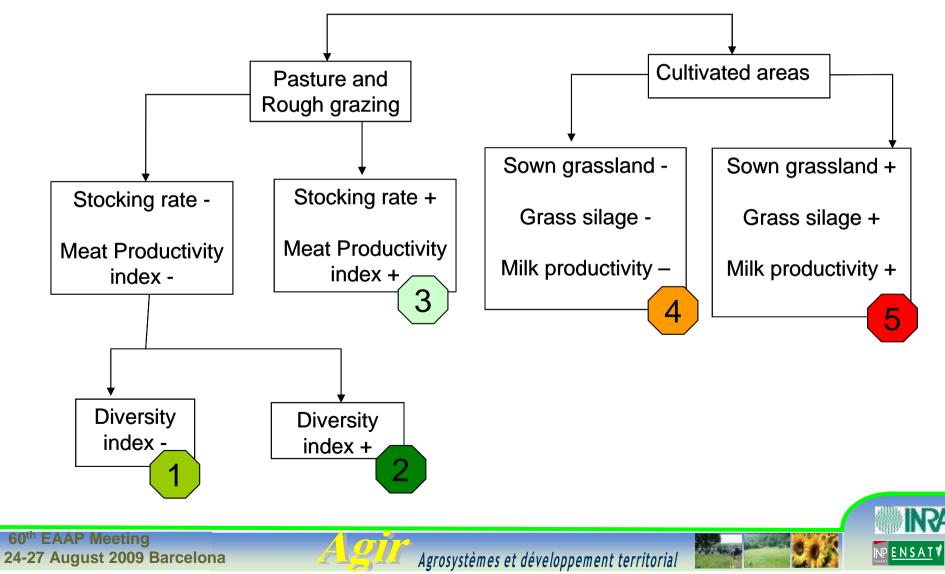
PCA can explains 72 % of inertia with the


Diversity/Stocking rate

3-first axis Axis1: MFA, SGA, GSA, DPI

Axis2: STR,GDI,MPI

Axis3: GDI, DPI, MPI


60th EAAP Meeting

NP E N S A T

Results: hierarchical classification

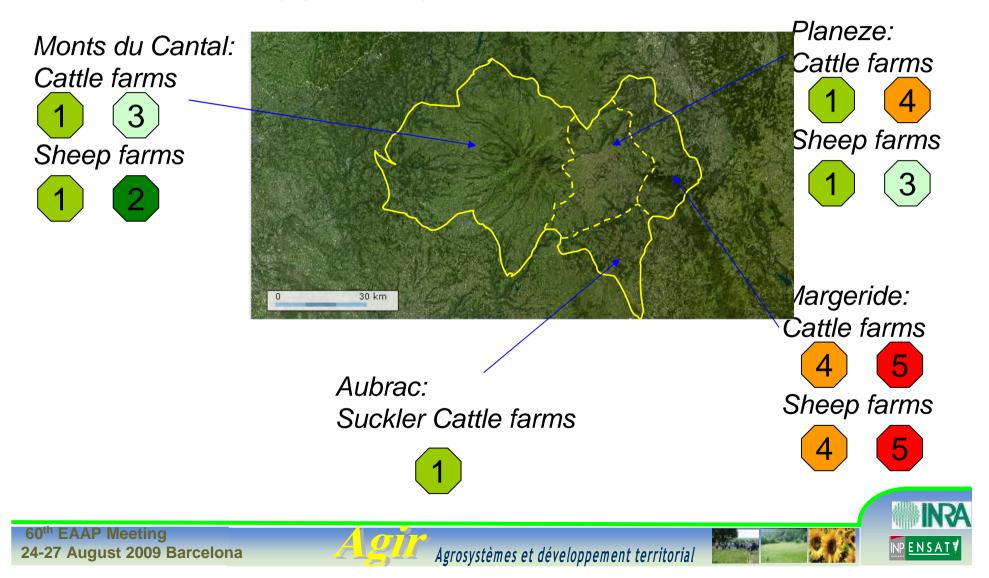
Results: farms' typology

Extensive Pasture Management (1285 farms): meat production, hay harvesting, STR=0.9 LU/ha; AA=76 ha; LU=66; GM= 471€/ha

4

Pasture & Rough Grazing Management (216 farms): meat production, traditional hay harvesting, use rough grazing, STR=0.85 LU/ha; AA=84 ha; LU=68; GM= 420€/ha

Intensive Pasture Management (465 farms): meat production, grass3silage harvesting, STR=1.3Lu/ha; AA=60 ha; LU=74; GM= 718€/ha


Extensive Grassland Management (715 farms): milk production, extensive sown grassland, cereals, grass silage harvesting, STR=1 LU/ha; AA=67 ha; LU=61; GM= 592€/ha

Intensive Grassland Management (219 farms): milk production, intensive sown grassland, cereals, grass silage harvesting, STR=1.2 LU/ha; AA=59 ha; LU=62; GM= 749€/haAA

Results: typology and natural areas

Discussion

- Farms' data extracted from the Agricultural Census can define different Grassland use management
- The typology take account a level of grassland intensification and grass silage use
- Grassland use management types seem linked to the natural agricultural areas and farming systems
- This work is a first step to assess the role of livestock farming in rural development (economic, biodiversity...)

60th EAAP Meeting 24-27 August 2009 Barcelona