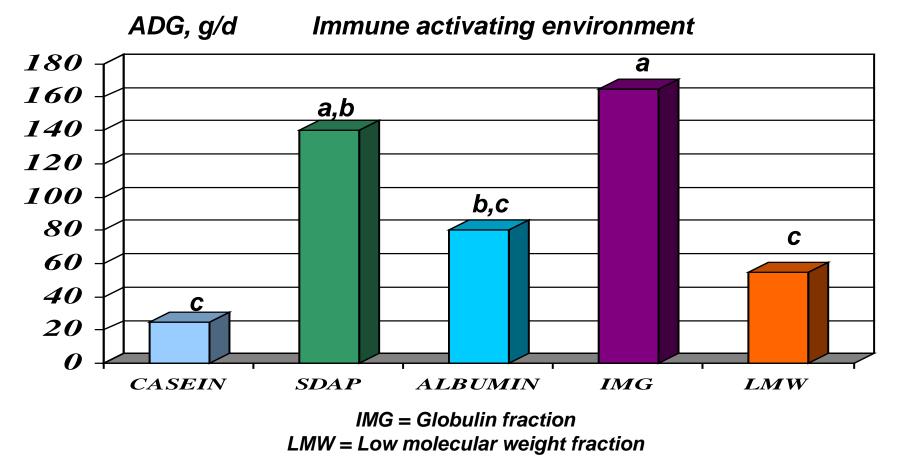
Effect of spray-dried porcine plasma (SDPP) and plasma fractions on performance of weaned pigs challenged with Salmonella typhimurium

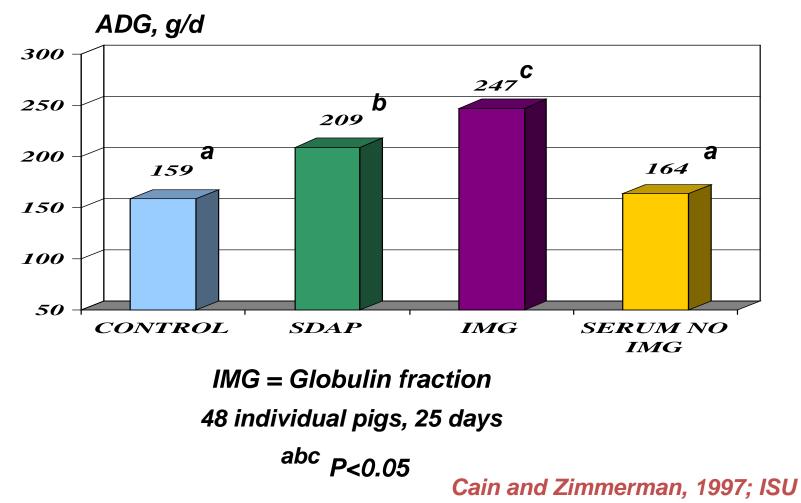
G. Bruggeman and C. Rodriguez and J.Polo



Mode of Action of Plasma

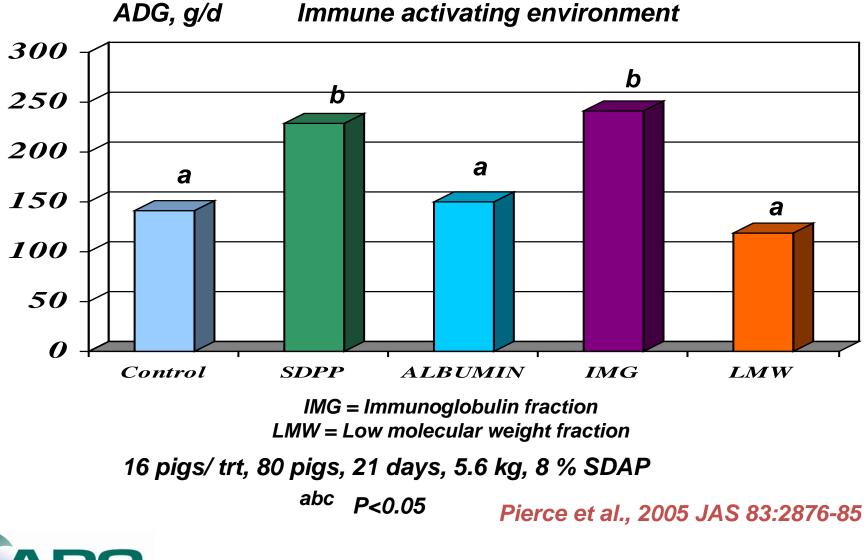
- Different theories about how plasma work:
 - Improve palatability of the diets (Ermer et al. 1994).
 - The IgG fraction main responsible for plasma effect (Gatnau & Zimmerman 1991; Weaver et al. 1995; Pierce et al. 2005).
 - Glycoprotein's presents in plasma are main responsible for plasma effect (Sanchez et al., 1993; Nollet et al., 1999).
 - Plasma improve the health status of the animals and therefore improve the performance parameters (Torrallardona et al., 2003).
 - Plasma reduce overstimulation of immune system (Touchette et al., 2002; Perez-Bosque et al., 2008)

MODE OF ACTION OF PLASMA ADG, g/d 0-15 days


3 trials, 45 pigs/ trial, 135 pigs, 19 days, 6 kg, 8 % SDAP

^{abc} P<0.05

Gatnau et al., 1995 ISU



MODE OF ACTION OF PLASMA ADG, g/d 0-15 days

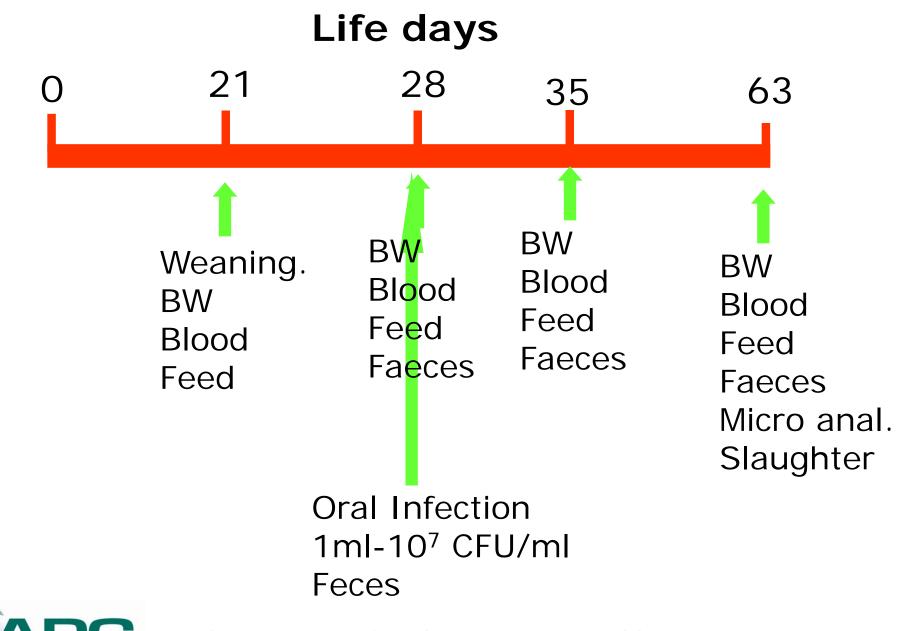
MODE OF ACTION OF PLASMA ADG, g/d 0-7 days

Material and Methods

- European Eureka Project Immucon E!2452 between APC Europe and Nutrition Sciences N.V. (Vitamex group).
- Trial performed at pig experimental farm of Ghent University
- Experimental units:
 - Number of treatments: 5 groups:
 - Group Negative Control: Control diet (Wheat Gluten, WG) without Salmonella Challenge.
 - Group Positive Control : Control diet + Salmonella challenge
 - Group SDPP: SDPP (5%) replacing WG + Salmonella Challenge
 - Group Immunoglobulins Concentrate (IC): IC (0.7%) + Salmonella Challenge
 - Group Albumin fraction (AC): AC (2.41%) + Salmonella Challenge

Material and Methods

- Salmonella challenge on day 7 (1ml of a solution containing 7.7 x 10⁷ cfu of Salmonella Typhimurium)
- Animals with experimental diets during the whole experimental period (42 days).
- Experimental diets: 17.5% Protein; 1.2% Lys; 0.7%
 Sulfur amino acids; 9.6 MJ/kg GE.
- −Number of pens: 20 pens → 4 pens per treatment
- -Number of piglets: 80 piglets -> 4 per pen


Material and Methods

• Weaning:

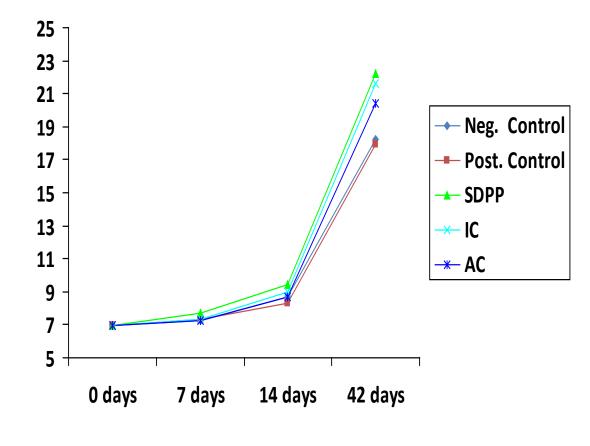
- At 21 days: Average initial weight of 6.93 kg per piglet.
- Piglets were distributed according to their initial BW per treatments.

• Record keeping:

- Individual weight of piglets and feed intake per pen: every week during the trial period:
 - ADG; ADFI, FCR and BW were determined for each period (7, 14 and 42 d)
- Mortality
- Faeces score
- Serology : Presence of Ab against Salmonella
- Salmonella shedding in faeces (rectal swabs from each animal twice a week)

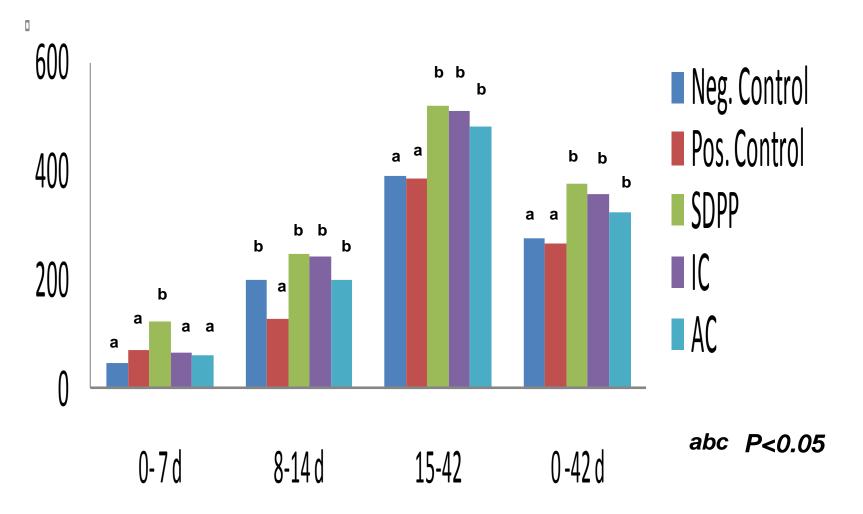
Composition of Blood Fractions

	<i>SDPP</i>	AC	IC
	Analys	is nutrient g/kg	
Dry matter	946.1	946.4	950.9
Protein	764.8	765.4	868.8
Ashes	139.9	68.0	49.7
	Protein	composition g/kg	3
Albumin	260.8	541.9	34.8
Immunoglobulin	98.7	34.4	710.7



Ingredient, g/kg	Control	SDPP	IC	AC
Corn	277.67	277.67	277.67	277.67
Wheat meal	199.75	199.75	199.75	199.75
Barley	188.00	188.00	188.00	188.00
Soybean 45/5	155.1	155.1	155.1	155.1
Whey powder sweet	58.28	58.28	58.28	58.28
Wheat gluten	41.61	-	33.94	20.40
SDPP ^a	-	50.00	-	-
IC	-	-	6.94	-
AC	-	-	-	24.1
Choline 60	32.43	32.43	32.43	32.43
Limestone	10.78	13.56	10.91	10.68
Vegetable oil	8.84	8.84	8.84	8.84
l-lysine	6.56	3.38	5.88	4.93
l-threonine	2.27	1.22	2.13	1.79
dl-methionine	1.03	1.03	1.05	1.05
l-tryptophan	0.45	0.23	0.43	0.36
Salt	4.59	2.02	4.51	4.06
Mix Vit-Min. ^b	2.75	2.75	2.75	2.75

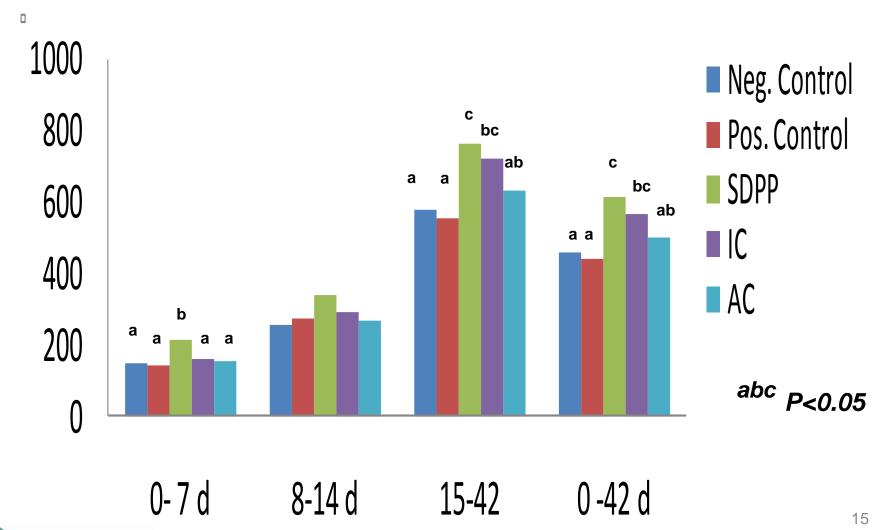
	Control	SDPP	IC	AC
Dry matter	892.0	890.1	891.8	891.2
Crude protein	174.0	175.0	174.1	173.5
Crude fibre	34.2	34.1	34.2	34.1
Fat	46.9	45.0	46.5	45.9
Ash	49.4	51.0	50.1	51.0
Starch	392.9	391.2	392.7	392.0
Sugars	68.2	68.2	68.4	68.2
ME (MJ kg ⁻¹)	13.6	13.5	13.6	13.6
Lys	12.0	12.3	11.9	12.1
Thr	7.9	8.4	8.0	8.2
Trp	2.3	2.5	2.3	2.4
Sulfur amino acids	6.8	7.3	6.9	7.0
Calculated plasma fractions, (g/kg):				
Albumin	0	13.04	0.24	13.06
Immunoglobulins	0	4.93	4.93	0.80

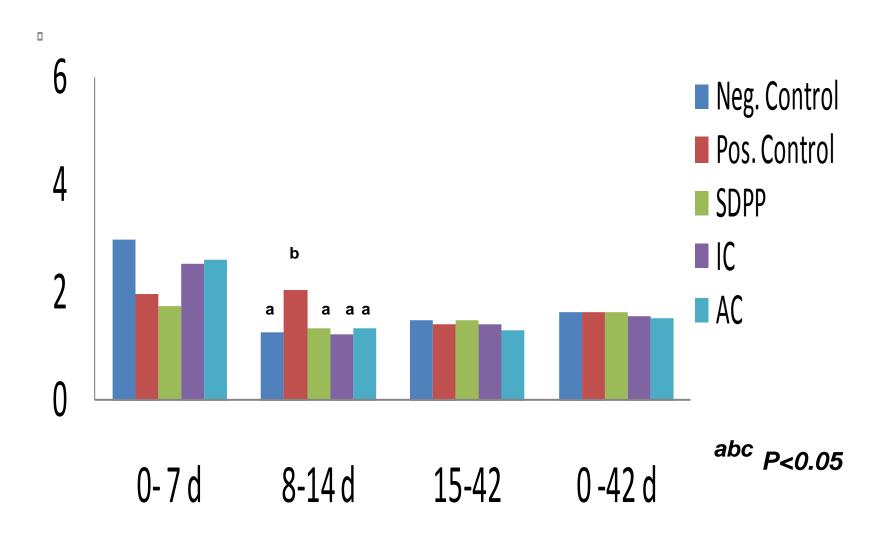

Body Weight Variation during the trial

• Small differences observed at 14 days are much higher at 42 days

•At 42 days, piglets in blood groups (SDPP, IC or AC) had between 3 to 4.5 Kg higher BW than control groups

ADG (g/d) during experimental period




Inventing the standards of protein technology through vision and research ■

14

ADFI (g/d) during experimental period

FC (Feed/gain) during experimental period

Effect of IgG on the diets

	Without immunoglobulin	With immunoglobulin
Day 0 to 7		
ADG, g/d	59.9 1.3	92.4 2.3*
ADFI, g/d	147.2 1.5	180.5 3.2**
Feed:gain, g/g	2.46 0.3	2.04 0.4
Day 8 to 14		
ADG, g/d	173.1 2.4	245.9 2.2***
ADFI, g/d	254.4 4.8	312.9 6.6*
Feed:gain, g/g	1.47 0.18	1.27 0.06
Day 15 to 42		
ADG, g/d	420.8 3.6	515.9 3.3***
ADFI, g/d	587.1 5.1	745.0 6.3***
Feed:gain, g/g	1.39 0.09	1.44 0.08
Day 0 to 42		
ADG, g/d	290.9 2.3	367.2 3.9***
ADFI, g/d	465.9 3.8	587.7 8.3***
Feed:gain, g/g	1.60 0.03	1.60 0.03

Performance of weaning pigs fed diets in function of the presence of immunoglobulins in the diets (average \pm SEM) Comparison made by using Student *t*-test, **P* < 0.05, ** *P* < 0.01, *** *P* < 0.001

Shedding of Salmonella in Faeces Over de Complete Trial

Group	Positive	Negative	% Positive	
Negative Control	0	96	0	
Positive Control	48	48	50	
SDPP	8	88	8	
IC	16	80	17	
AC	24	72	25	
X ² <u>All groups</u>	P < 0.001			
SDPP vs IC	P = 0.122			
SDPP vs AC	P < 0.001			
IC vs AC	P < 0.001			

Bacterological and Serological Results

- No differences between treatments in Stomach, Ileum and Colon for:
 - Total Plate Count
 - Enterobacteriaceae
 - E.coli
 - Lactic acid bacteria
- None of the tested animals had antibodies againts *Salmonella* in their blood

Conclusions

- Blood products improve the performance parameters compare with the control treatments during the whole experiment.
- No differences for ADG comparing between blood products although numerically whole plasma was better than the other two fractions.
- Salmonella shedding was reduced by blood products. The higher reduction was obtained by SDPP followed by IC and AC.

Conclusions

- IgG is one of the key proteins responsible for plasma effect.
- Although, plasma effects is not only due to IgG fraction, other proteins and peptides present in plasma had effect on performance and improve health for piglets fed with SDPP.
- These data correlated with latest research that indicates that other proteins presents in plasma take a role on plasma effect. (Perez-Bosque et al., 2008)

Thanks for your time

