


Background

- IMF content & composition are important traits for high-quality dry-cured ham
- IMF can be selected successfully
 ✓ h² = 0.58
- at expense of increased BT
 - \checkmark r_{IMF, BT}: 0.64 & r_{IMF, BW}: 0.34
- * There is room for improving both IMF & BT

(Solanes et al., 2009)

Objectives

- Prove experimentally that BT can be decreased by selection without changing IMF
- Estimate correlated responses in BW & carcass traits
- Evaluate opportunities for changing IMF fatty acid composition by selection

	n _c	n _s	BT (mm)	IMF (%)	BW (kg)
Batch 1	52	55	- 0.75	+ 0.13	- 0.91
Batch 2	56	50	- 0.64	- 0.02	- 0.74
Batch 3	39	33	- 0.85	+ 0.04	- 0.39
Batch 4	41	34	- 0.98	- 0.03	- 0.60
Total	188	172			

			Р	igs with c	lata
Group	Sires	Dams	вт	IMFGM	IMFLM
Selected	39	100	172	159	41
Control	48	107	188	179	47

Methods

- IMF content and FA composition were determined in duplicate by quantitative GC (Bosch et al, 2009)
 - ✓ IMF = ∑ 11 FA
- ✤ Response was estimated as S C
 - ✓ Y = group (S, C) + batch + b age (carcass weight)

se in BT, mm		
	Gro	oup
Age, days	S	С
120	9.9ª	10.9 ^t
160	14.1ª	15.5 ^t
180	16.2ª	17.8 ^t
210	19.4 ª	20.7 ^k

		Group	
		S	С
Gluteus Me	dius,%		
	MF	4.3	4.4
	NUFA	50.7	51.2
(Dleic FA	46.2	46.6
Longissimu	s dorsi, %		
	MF	3.5	3.7
1	NUFA	52.2	52.3
(Dleic FA	47.2	47.3

	Gro	oup
Age, days	S	С
120	57.4ª	59.4 ^b
160	88.3ª	90.9 ^b
180	103.3ª	106.4 ^b
210	122.1ª	125.8 ^b

	Group	
	S	С
at 215 days		
Carcass weight, kg	94.8ª	97.6 ^b
Weight of hams, kg	24.3	24.6
Lean content, %	48.8 ª	48.0 ^b
at 95 kg		
BT, mm	22.9	23.4
Weight of hams, kg	24.4 ª	24.1 ^b
Lean content, %	48.5	48.1

Conc	clusions
*	Selection against BT at restrained IMF decreased BT at no change in IMF
*	but led to unfavourable correlated response in growth traits
*	- although not in the weight of hams

Methods/2

Data

- ✓ 879 GM from barrows at 210 days
- * Genetic parameters for IMF FA were estimated in a series of trivariate analyses
 - ✓ Y = batch (12) + animal (4616) + b _{age (or cw)}
 - ✓ TM programme (Legarra et al., 2008)

			r	g
	h²	σ_{a}	MUFA210	OLEIC210
IMF210	0.52	1.30	0.57	0.55
OLEIC210	0.52	1.48	0.97	

enetic correla	ations of IMF & OL with BW &BT				
	BW 180	BT 180	BW 210	BT210	
IMF210	- 0.43	0.18	- 0.44	0.09	
OLEIC210	- 0.54	- 0.04	- 0.52	-0.03	

	IMF210	OL210	BW 210	BT 210
ΔBW(210-180)	0.16	0.03	0.19	- 0.09
ΔBT(210-180)	- 0.08	0.21	0.07	0.74

Conclusions/2

✤ Selection for oleic FA is expected to increase IMF at no change in BT

- ✤ …but it also would decrease BW
- ✤ Emphasis on growth rate at the late fattening period would help to maintain BW