The effect of cereal type and enzyme supplementation on boar taint

C. PAULY¹, P. SPRING¹, J.V. O'DOHERTY²

¹ Swiss College of Agriculture, Länggasse 85, Zollikofen 3052, Switzerland ² University College Dublin, Belfield, Dublin 4, Ireland *Corresponding author: peter.spring-staehli@bfh.ch

Entire male pigs can develop boar taint, a bad odour and flavour in the meat. Boar taint is mainly due to the presence of the three substances, androstenone, skatole and indole. Skatole (3-methyl-indole) and indole have a faecal like odour and are produced during the anaerobic degradation of L-tryptophan by specific bacteria in the colon. Carbohydrates such as oligosaccharides, resistant starches and non-starch polysaccharides, which have a low precaecal digestibility, have been shown to decrease skatole synthesis.

THE HYPOTHESIS

- > Cereal will affect skatole and indole synthesis in the digestive tract and their concentrations in the adipose
- > Enzyme supplementation will have a moderate effect. Interaction with cereal might exist.

THE CONCLUSIONS

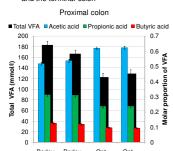
- Feeding barley-based diets in comparison to oat-based diets led to lower indole concentrations in the adipose tissue, HOWEVER feeding barley-based diets was not sufficient for efficiency controlling skatole.
- Enzyme supplementation have no effect on skatole and indole concentrations in the adipose tissue.
- ✓ Feeding other non-starch polysaccharides or resistant starch would be more efficient in reducing skatole.

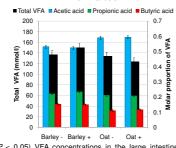
MATERIALS & METHODS

Thirty-two Irish entire male finishing pigs (progeny of meat-line boars × (Large White × Landrace sows)) were randomly allocated to one of four dietary treatments (eight entire males per treatment). The experimental treatments were as follows:

- 8 pigs fed a barley-based diet containing an enzyme supplement
- 8 pigs fed an oat-based diet
- 8 pigs fed an oat-based diet containing an enzyme supplement

Initial RW 76.0 ± 6.5 kg 113.6 ± 11.3 kg Final BW: Feeding system: ad lihitum Measured parameters:


Total volatile fatty acids (VFA) concentrations in the digesta, molar proportion of VFA and pH in the proximal and the terminal colon - Skatole and indole concentrations in the digesta


- Skatole, indole and androstenone levels in the adipose tissue

Statistical analysis: As a 2 x 2 factorial arrangement of treatments with the GLM procedure in NCSS

In case of interaction, test for 2-factors interactions (Tukey-Krame) Multiple-Comparison test; probability level: P < 0.05).

Figure 1 and 2: total VFA concentrations in digesta and molar proportions of VFA in the proximal and the terminal colon

Feeding barley-based diets led to higher (P < 0.05) VFA concentrations in the large intestine Proportions of propionic and butyric acids were higher and that of acetic acid lower in digesta from barley-based in comparison to oat-based diets (P < 0.001). Consequently, pH in the large intestine was lower after feeding barley-based in comparison to oat-based diets

RESULTS

Table 1: Effects of cereal type and enzyme inclusion on skatole and indole concentrations in the digesta and skatole, indole and androstenone levels in the adipose tissue (least-square mean \pm s.e.)

Cereal type (C)									
	Barley		0	Oat		Significance		e Covariable	
Enzyme supplementation (E)	-	+	-	+	s.e.	С	Е	CxE	Carcass weight
Proximal colon									
Digesta DM (g/kg)	138	138	124	171	14.0	ns	ns	ns	
Skatole (mg/kg DM)	19.4	25.8	20.9	18.0	8.21	ns	ns	ns	
Indole (mg/kg DM)	13.2	23.1	57.2	29.5	7.99	***	ns	**	
Terminal colon									
Digesta DM (g/kg)	231	250	261	274	9.2	**	ns	ns	
Skatole (mg/kg DM)	62.2	67.9	50.3	29.9	9.22	**	ns	ns	
Indole (mg/kg DM)	14.8	22.8	33.4	33.9	3.67	***	ns	ns	
Adipose tissue									
Skatole (µg/g)	0.13	0.15	0.13	0.10	0.039	ns	ns	ns	ns
Indole (µg/g)	0.04	0.04	0.08	0.12	0.021	***	ns	ns	ns
Androstenone (μg/g)	0.9	8.0	1.0	0.2	0.28	ns	*	**	*

- C: cereal type; E: enzyme supplementation; s.e.: standard error, ns: non significant (P > 0.05). * P < 0.05, ** P < 0.01, *** P < 0.001
- Animals fed unsupplemented oat-based diet had higher (P < 0.01) indole concentrations in the digesta from the proximal colon than those fed barley-based diets
- Feeding oat-based diets led to lower (P < 0.01) skatole and higher (P < 0.001) indole concentrations in the digesta from the terminal colon than barley-based diet
- ·Skatole concentrations in the adipose tissue did not differ between the experimental treatments
- Pigs offered the barley-based diets had lower (P < 0.001) indole concentrations compared with those fed the oat-based diets