Effects of inbreeding on sperm quality in Fleckvieh (Simmental) bulls

B. Fuerst-Waltl, B. Gredler, L. Maximini, R. Baumung

University of Natural Resources and Applied Life Sciences (BOKU) Vienna, Austria

Summary

- Inbreeding coefficients of AI bulls are quite low
- All sperm quality traits are affected by inbreeding depression
- Neither the actual inbreeding level nor the inbreeding depressions seem to be alarming
- Monitoring of inbreeding effects on male fertility traits is recommended

1. Why this topic?

- Fleckvieh is the main cattle breed in Austria (80 %)
- 96 % of all cows are artificially inseminated
- low number of bulls with a high number of offspring
- increasing level of inbreeding
- · increasing importance of male fertility

Austrian cattle breeds (source: C. Fuerst, ZuchtData) 4.5 4.0

Figure 1: Increase of inbreeding coefficients (in %) in different

2. The goal

Quantifying and qualifying the effects of inbreeding on male fertility of AI bulls

3. Data

- Data from 2 AI stations in Austria
- Years 2000 to 2006
- 30,000 ejaculates from 715 bulls
- Traits: volume, concentration, motility, number of spermatozoa per ejaculate and percentage of viable spermatozoa
- Complete pedigree data

4. Methods

- Calculation of inbreeding coefficients (PEDIG)
- Pedigree analysis average complete generation equivalent (PEDIG)
- Calculation of partial inbreeding coefficients
- (Co)variance analyses (SAS PROC MIXED)
- Separate analysis for the AI stations

(Co) variance analyses:

- Random effect: bull
- Fixed effects: bulls' age class at collection, bull handler, semen collector, interval in days since the last collection, number of collection within day
- · Linear continuous effect: inbreeding coefficient
- Interactions: age and interval, age and month
- Random residual

5. Results

Table 1: Inbreeding coefficients of the AI bulls

AI station	ØF	max. F	F > 0	F > 5%	F > 7%
A (N=317)	1.16%	7.47%	305 (96.2%)	4 (1.3%)	1 (0.3%)
B (N=398)	1.47%	7.55%	396 (99.5%)	8 (2.0%)	3 (0.8%)

Table 2: Effect of 10% increase in inbreeding on sperm quality traits for bulls at AI station B

1	Trait	Regression coefficient F
	Volume (ml)	-1.53**
	Concentration (10 ⁹ /ml)	-0.13
	Number of spermatozoa (10 ⁹)	-2.40**
	Viable spermatozoa (%)	-2.72*
_	Motility (F)	0.20
	(F ²)	-0.08**

Significance levels: * = P < 0,05, **=P < 0.01

University of Natural

Applied Life Sciences

Resources and

Vienna