Effect of supplementation of NSP enzymes in association with phytase on egg production parameters in laying hens fed maize and soybean meal based diet

MATHLOUTHI, N¹, MASSAOUDI, I², SASSI, T³, Majdoub-Mathlouthi, L⁴, UZU, G⁵, BERGAOUI, R²

¹Ecole Supérieure d'Agriculture du Kef, 7119 Le Kef, Tunisia ²Institut National Agronomique de Tunisie, LR « Economie en Agroalimentaire », Tunisia ³Cristal, 21 rue de l'Usine, Z.I. Charguia II, 2080 Ariana, Tunisia ⁴Institut supérieur Agronomique de Chott-Mariem, 4042 Sousse, Tunisia ⁵Adisseo, 42 avenue Aristide Briand, 92160 Antony, France

Introduction

The association between phytase and carbohydrases can be categorised as synergistic. Their positive effects are due to enhancement of nutrient digestibility in young chicks fed corn and soybean meal. What about laying hens ?

<u>Objective</u>

The aim of this study is to evaluate the response of laying hens to multi-enzymes preparation containing xylanase, β -glucanase and phytase.

Materials and methods

✓ Enzymatic activities: xylanase : 1400 AXC units g^{-1} ; β -glucanase : 2000 AGL units g^{-1} ; phytase : 10000 FTU g^{-1} (Rovabio Max, Adisseo, SA-France).

✓ Seven hundred and sixty eight laying hens (Hy Line Brown) were allowed into 3 groups:

PC : positive control group: diet cover the nutritional requirements for laying hens

NC : negative control group: diet containing fewer nutrients than PC (AP: 0.18 vs. 0.33; ME: 2590 vs. 2655 kcal/kg; CP: 16.65 vs. 16.90%)

NC + enz : NC diet supplemented with 50 mg of multi-enzymes preparation / kg of diet

 \checkmark egg production, egg weight, feed intake and body weight were recorded.

 \checkmark Data were analysed using the ANOVA procedure of Statview.

<u>Results</u>

Table 1. Effect of multi-enzymes preparation on egg production parameters

Groups	Egg weight (g)	Egg production (% hen-day)	Egg mass (g/day/hen)	Feed intake (g/day/hen)	Feed conversion ratio
PC	62.50	93.60ª	58.43ª	110.81ª	1.907°
NC	62.16	92.18 ^b	57.22 ^b	113.47 ^b	1.994 ^b
NC + enz	62.68	93.96ª	58.98ª	112.66°	1.914ª
Probability	NS	P = 0.0055	P = 0.0283	P < 0.0001	P = 0.0074

 $\checkmark \rm NC$ group had the lowest egg production and the highest feed intake

 \checkmark Multi-enzymes preparation increased egg production by 2% and egg mass by 3%.

✓ Multi-enzymes preparation decreased feed conversion rate by 4%.

 \checkmark Egg weight and changes in body weight were not affected.

 \checkmark Performances were similar between PC and NC + enz.

<u>Conclusion</u>

Multi-enzymes preparation allows to save nutrients (P, Ca, CP and ME) without affecting the laying hen performances.

