Genome wide diversity: heterozygosity vs. IBD

Krista A Engelsma, MPL Calus, SJ Hiemstra, P Bijma and JJ Windig

Animal Breeding & Genomics Centre Centre for Genetic Resources, The Netherlands

EAAP 2009 August 26, Session 33, Abstract 4658 Krista.Engelsma@wur.nl

Introduction

- Genetic diversity in livestock
- Loss of diversity
- Average diversity (pedigree) diversity on specific regions on the genome (non-neutral trait, i.e. growth and fertility)
- Dense marker maps (SNPs)
 Predict diversity on untyped regions (i.e. unknown QTL)

Genetic diversity evaluation

 Molecular / population genetics
 Heterozygosity % individuals that have 2 different alleles

Quantitative genetics

- Average relatedness
 - % DNA that is identical by descent (IBD)

Aim

Estimation of genetic diversity on untyped regions over the genome

Original Compare two methods: IBD and heterozygosity

→ Which method best predicts genetic diversity between markers?

Simulation

1 chromosome of 1 Morgan
1,800 SNP markers
Effective population size = 100
100 + 3 generations
3 generations: 2,100 genotyped animals

Genetic diversity over the genome

True genetic diversity

Heterozygosity of the untyped marker

WAGENINGEN UR

WAGENINGEN UR

IBD-based genetic diversity

ANIMAL SCIENCES GROUP WAGENINGEN UR

Population level

IBD

Diversity-IBD = 1 – average P(IBD)
 (Details in Meuwissen (1997))

Heterozygosity

• He = # heterozygotes / # animals

Genetic diversity over marker intervals

True diversity

→ Large variation between markers

Genetic diversity over marker intervals

True diversity

→ Difference in level

Correlations: IBD vs. heterozygosity

Marker intervals

	True	4	10	20	40
IBD	0.27	0.42	0.57	0.72	0.82
Не	0.16	0.23	0.38	0.57	0.70

Conclusions

IBD-method better predictor for genetic diversity on untyped regions of the genome

More insight into genetic diversity on specific regions of the genome

Can be taken into account when selecting animals for conservation

Questions?

IBD-method better predictor for genetic diversity on untyped regions of the genome

More insight into genetic diversity on specific regions of the genome

Can be taken into account when selecting animals for conservation

