

E CALIDADE LIMENTARIA

EFFECT OF STOCKING RATE ON SWARD CHARACTERISTICS AND MILK PRODUCTION IN GRAZING DAIRY COWS

A. I. ROCA FERNÁNDEZ, A. GONZÁLEZ RODRÍGUEZ, O. P. VÁZQUEZ YÁÑEZ Agrarian Research Centre of Mabegondo. INGACAL. A Coruña (Spain) anairf@ciam.es, antonio.gonzalez.rodriguez@xunta.es

Background Objective Materials and Methods Results and Discussion Conclusions

Background

Milk production systems must be competitive and sustainable to maximize farm resources in order to reduce feed costs and improve grass quality.

• High reliance on grazed herbage offers important benefits (economical, animal and environmental).

It is necessary to know more about how **stocking rate** affects:

- milk production and quality in dairy systems
- herbage intake and sward quality
- substitutive effects of supplementation

Objective

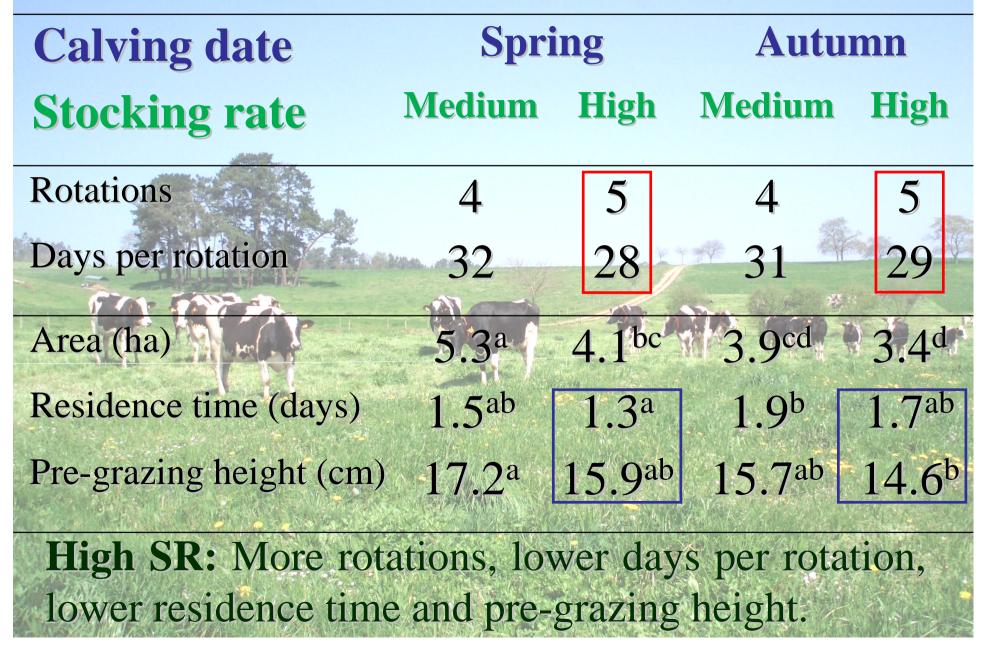
To investigate the effect of stocking rate on sward characteristics, milk yield and pasture dry matter intake of spring and autumn calving dairy cows.

Materials and Methods

• 4 Grazing Treatments (perennial ryegrass and white clover): 16th March to 2nd August

• 2 Herds ≠ calving date (primiparous and multiparous dairy cows): • S, 44 spring calving (15th February) • A, 28 autumn calving (30th October) • 2 Stocking rates: • M, medium (4 cows/ha) • H, high (6 cows/ha)

Sward Measurements I


- Pre- and post- grazing Height and Herbage Mass (HM)
- Daily Herbage Allowance (DHA)
- Total DM production
- Pasture Dry Matter Intake (PDMI)
- Herbage utilisation
- Botanical composition: Grass, Legumes,
 Other *spp*. and Dead proportion

Sward Measurements II Chemical composition by NIRS: Organic Matter (OM) Crude Protein (CP) Acid Detergent Fibre (ADF) Neutral Detergent Fibre (NDF) Water Soluble Carbohidrates (WSC) Organic Matter Digestibility (OMD) and in vitro OMD (IVOMD)

Animal Measurements

- Milk yield (MY)
- Body Weight (BW)
- Body Condition Score (BCS)
- Milk composition by Milkoscan:
 - Fat
 - Protein
 - Urea

Statistical Analysis SPSS 15.00

Calving date	Spring		Autumn	
Stocking rate	Medium	High	Medium	High
Stocking rate (cows/ha)	4.3 ^a	5.8 ^b	3.6°	4.6 ^a
Allowance (kg DM/cow)	17 ^{ab}	15 ^{ab}	18ª	15 ^b
Grass intake (kg DM/cow)	13 ^{ab}	12 ^{ab}	14 ^a	10 ^b
Sward utilisation (%)	79	83	77	81
Silage (kg DM/cow)	4	5	5	6
Concentrate (kg DM/cow)	<u>3</u> ª	3 ^a	1 ^b	1b

Calving date	Spring Autumn				
Stocking rate	Medium	High	Medium	Fligh	
OM (g/kg)	905 ^{ab}	901 ^{ab}	906ª	899 ^b	
CP (g/kg)	128 ^a	138 ^{ab}	140 ^{ab}	154 ^b	
ADF (g/kg)	310 ^a	291 ^b	299 ^{ab}	294 ^b	
NDF (g/kg)	529 ^a	518 ^b	536 ^a	528 ^{ab}	
WSC (g/kg)	156 ^{ab}	168ª	154 ^{ab}	146 ^b	
OMD (g/kg)	717 ^a	735 ^b	728 ^a	732 ^{ab}	
IVOMD (g/kg)	757 ^a	781 ^b	768 ^b	767 ^a	

Calving date	Spring		Autumn	
Stocking rate	Medium	High	Medium	High
Body Weight (kg)	574	563	593	580
Body Condition Score	3	3	3	3
Milk yield (kg/day)	24.3ª	25.3 ^b	20.5°	18.5 ^d
Milk protein (g/kg)	29 ^a	29 ^a	31 ^b	32°
Milk fat (g/kg)	38 ^{ac}	37 ^b	37 ^{ab}	40°
Milk urea content (mg/kg)	192 ^{ab}	185 ^b	224ª	212 ^a

Conclusions

• The high stocking rate and low daily herbage allowance had a positive effect on the sward utilisation by dairy cows. Increasing the stocking rate also reduce the substitutive effects of supplementation and achieve a better grass and milk quality. Acknowledgements Project RTA2005-00204-00-00 financed by INIA

Thank you very much for your attention.

Questions?????