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Project Aim: 
To find the best method for 
GENOMIC SELECTION for 
implementation and use by the 
Australian dairy industry 



•Number of SNP (p) is greater than the number of individuals or 
records (n) i.e p>n problem

– oversaturated or overparameterised model    
•Large number of SNP effects that are zero or close to zero (need
a sparse model).  
WHAT APPROACH SHOULD BE USED??

–Dimension Reduction (PCA, PLS) 
–Machine learning (SVM)
–Shrinkage models – penalised methods exploring sparsity
(LASSO)
–Variable Dimension Model approaches (SSVS) 
–Variable Selection (reduced set of SNPs) 

Generally, the methods to predict of GEBV 
face 2 statistical issues: 

Bayesian Inference

Project: Tested 20 Methods!



Data

Reference Population
• 1098 Holstein Friesian bulls progeny tested ≤ 2003
Validation Population
• 400 Holstein Friesian bulls progeny tested > 2003
Phenotypes
• deregressed breeding values for protein, fat, milk volume, protein%, fat%, 
fertility, ASI (Australian Selection Index), APR (Australian Profit Ranking) and 
Overall type.   
Genotypes 
•39,048 markers

Evaluate methods on
• r(GEBV,ABV)  
Correlation of Predicted GEBV with 
Australian breeding value (ABV) 
•MSE
•Regression Coefficient



Bayesian Models
Statistical Model:

• y is the vector of phenotypes of the trait for n individuals
• µ is the mean
• is a vector of ones of length n
• Xj is a vector of indicator variables representing the genotypes of

the jth marker for all individuals (xij=0,1,2)
• βj is the size of the SNP effect associated with marker j
• u is the vector of random polygenic effects of length n (Z is the

associated design matrix)

• e is the residual error 
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SNP EFFECTS
• Normal-inverse scaled chi 
square (t distribution)
• unequal variance
• assumes that all SNPs have 
an effect 
•Gibbs Sampler 
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Bayes A

Prior Distributions
SNP effects

r degrees of freedom and 
scale parameter S
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Prior Distributions
SNP effects SNP EFFECTS

• Normal
• equal variance
• Infinitesimal assumptions
• assumes that all SNPs have 
an effect 
•Gibbs Samplerr degrees of freedom and 

scale parameter S



Bayes C
Stochastic Search Variable Selection (SSVS)

Prior Distributions
SNP effects
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SNP EFFECTS
• Mixture of two Normal-
inverse scaled chi square 
distributions (t distributions) 
• unequal variance
•assumes that a few SNP 
have an significant effect 

iγ
(George and McCulloch, 1993)

Use latent variable         (0,1) 

SNPs with γi=0, posterior values limited 
to values close to 0 (but not removed 
from the model- NO changing 
dimensionality) – GIBBS SAMPLER

SAME ASSUMPTIONS AS 
BAYES B



Methods

• Bayes A
– All SNPs
– Selected SNPs with weights 
– Selected SNPs without weights

• Bayes BLUP
– All SNPs
– Selected SNPs with weights 
– Selected SNPs without weights

• Bayes C
– All SNPs



SNP Pre-selection 

Single SNP analysis (ASReml) 

• X is a vector of indicator variables representing the genotypes of
the current SNP marker for all individuals (Xn=0,1,2) and β is the 
associated effect of the SNP

• u1 is the random sire effect (Z1 associated design matrix) 

• u2 is the random maternal grand sire effect (Z2 associated design 
matrix) 
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Fitted with and without weights 

-Weights = Number of Effective Records

-SNPs with p-value <0.1 included in predictive set. 



Results r(GEBV,ABV)

0.6700.5880.6440.7280.557Bayes C

0.6480.5830.6350.7040.538Bayes A - Selected SNPs -
(Weighted)

0.6670.5790.6390.7120.543Bayes A - Selected SNPs -
(Unweighted)

0.6450.5720.6310.7000.538Bayes A - All SNPs

0.6610.6100.6590.6430.543Bayes BLUP - Selected 
SNPs (Weighted)

0.6780.5960.6460.6890.527Bayes BLUP - Selected 
SNPs (Unweighted)

0.6600.6130.6480.6300.528Bayes BLUP - All SNPs

Protein%ProteinMilkFat%FatMethod



Fat % - DGAT1

• QTL explains > 50% of genetic variance in fat%
• QTL allele is common and acts additively
→ Major violation of BLUP assumptions 

Grisart et al. (2002)
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Results r(GEBV,ABV)



0.588GBLUP

0.592PLS 

0.587SVR 

0.595LASSO 

0.597Bayes C

0.578Bayes A 

0.589Bayes BLUP

Average Correlation 
Across all traitsMethod

RESULTS - IN CONTEXT: 

A SUBSET OF ALL METHODS USING ALL SNPs



Conclusions 

• Only small differences in accuracy and bias of GEBV 
from different methods

• Method by trait interaction. Better results when priors 
matched “real” distribution of QTL effects
→ best method is trait dependent!

• Pre-selection of SNP neither reduces or increases the 
accuracy of predicted GEBV 

• Bayesian BLUP performs as well as or better than the 
other methods EXCEPT for traits with QTL that explain 
large amount of genetic variance  eg. Fat % with DGAT1 

• Still a need to find a method that produces equally 
accurate GEBV across traits with different genetic 
architecture.  
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