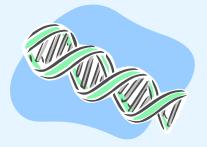


Performance of genomic selection for traits in mice using Bayesian multi-marker models

D N R G Kapell, D Sorensen, G Su, L L G Janss, C J Ashworth and R Roehe

EAAP 26/08/09


Outline

- Aims & Introduction
 - Genomic Selection & Mixtures
- Materials
 - Mice & SNP
- Methods
 - Models & Mixtures
- Results
 - Variances
 - Predictive Ability
 - Accuracy
- Conclusions

Introduction

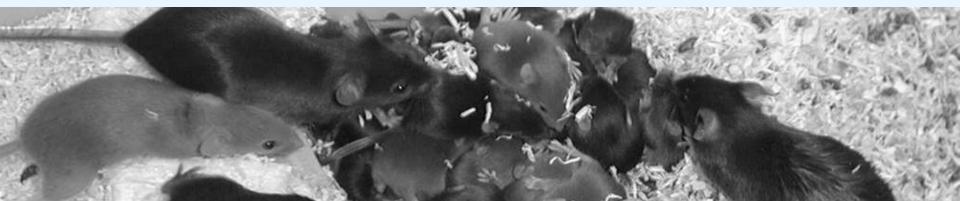
- Polygenic selection
 - Uses phenotypic records and pedigree
- Genomic selection

- Uses genome wide dense markers to estimate genomic breeding values
- Uses several thousand markers, with varying size of effect
- Differences between methods of genomic selection are often in the prior assumptions regarding the size of the marker effects
- The marker effect can be estimated by using a mixture of two distributions, one where the marker is associated with no effect and one where the marker is associated with an effect

- To compare the predictive ability of models based on:
 - Polygenic effects only
 - Genomic effects only
 - Combined genomic & polygenic effects
- Across a range of traits

• With different mixtures of the proportion of markers with or without effects

- Data available from WTCHG (<u>http://gscan.well.ox.ac.uk/</u>)
- 2281 genotyped mice with 10946 SNPs
- 3 traits, ranging from high to low heritability:
 - 6-Wk weight (h²=0.74)¹
 - Total activity $(h^2=0.34)^1$
 - Hematocrit percentage (h²=0.11)¹
 - ¹ (Valdar et al.,2006)


- All traits analysed with full model
 - Fixed effects, covariates and transformations based on Valdar et al.,2006
- Pedigree 2890 animals
- Cages almost completely housed animals from one full sib family (avg 3.1 cages/family)

• Descriptive statistics (after transformation)

Trait	n	Mean ± s.e.	Family size
6-Wk weight	1916	272.0 ± 15.0	11.3 ± 8.0
Total activity	1879	44.9 ± 14.8	10.1 ± 7.5
Hematocrit %	1578	$\textbf{22.3} \pm \textbf{7.9}$	10.9 ± 7.8

Method: overview

- Model 1: polygenic effects only
- Model 2: genomic effects only
- Model 3: polygenic and genomic effects combined
- Models 2 and 3 with different percentages of markers having an effect
 - Mixture model with 10%, 40% and 70% of markers showing an effect
 - Non mixture model with all markers showing an effect

Method: model

- All models analysed using iBay (L. Janss, 2009)
- Bayesian multi-marker model

$$y = \mu + \sum_{i} X_{1,i} \beta i + \sum_{j} X_{2,j} \gamma_{j} + \sum_{k} \sigma_{k} Q_{k} \alpha_{k} + Zu + e$$

- $\sigma_k Q_k \alpha_k$ fits the marker effects, where α_k is a vector with the effects of marker alleles and σ_k is a scaling factor modelling the variance explained by that marker

Method: mixtures

- Prior assigned to the scaling factor σ_{k}
 - For non mixture models:
 - $\sigma_k \sim TN_{>0} (0, \sigma_a^2)$
 - Whereby σ_{α}^2 can be interpreted approx. as the expected average fitted variance per marker
 - For mixture models:

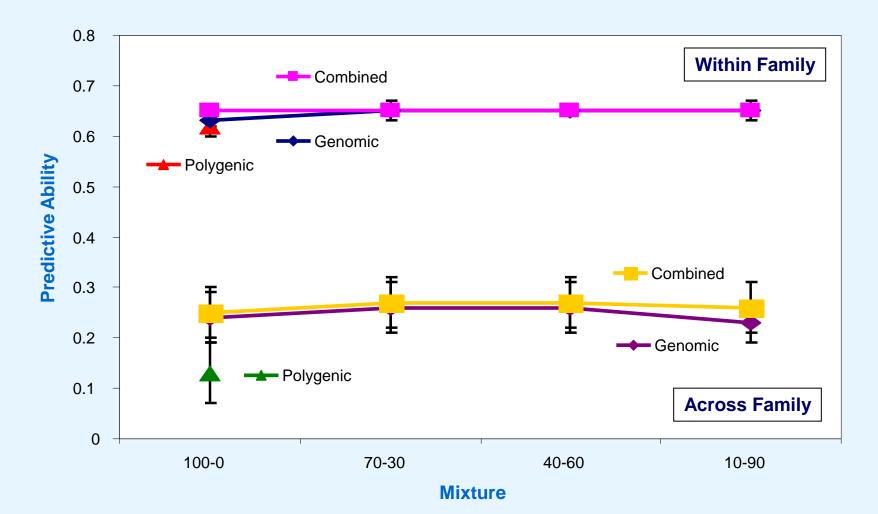
- $\sigma_k \sim \begin{cases} N(0,\sigma_{g0}^2) \text{ with probability } \pi_0 \\ TN_{>0}(0,\sigma_{g1}^2) \text{ with probability } \pi_1 = 1 \pi_0 \end{cases}$
- Whereby the first distribution models the markers with no effect with π_0 the proportion of markers without effect, and the second distribution models with markers that have an effect with proportion π_1

Method: datasets

- Variance components
 - Based on full set of phenotypic data
- Predictive ability
 - Correlation between predicted and observed based on residuals
 - Observed phenotype corrected for fixed effects excl. cage
 - Five subsets of the full set
 - Proportion of training:validation set = 5:1
 - Accuracy
 - Increased correlation of model 2 vs. model 1, depending on variances

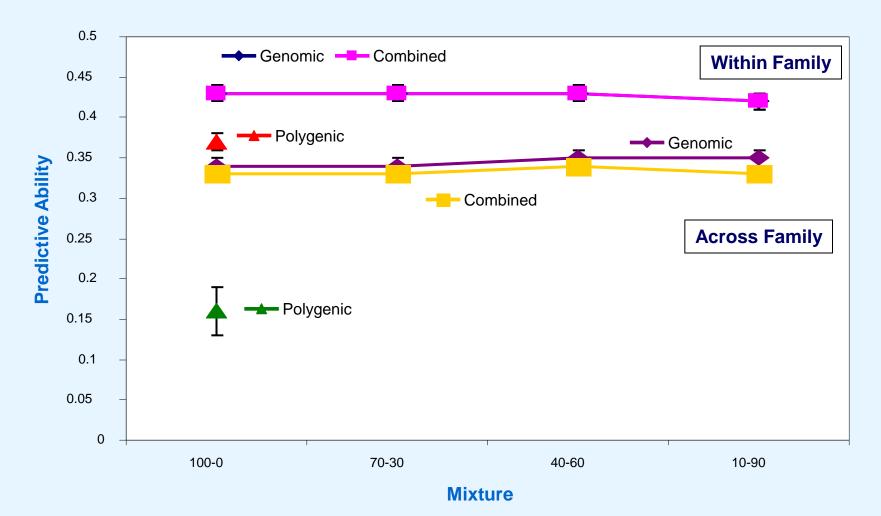
Method: sampling

- Selection within family
 - 1/6th of animals per family in validation
 - Splitting full-sib families over datasets
 - Use within family information
- Selection across families
 - 1/6th of all families in validation
 - Select entire families
 - Little or no relationship between families
 - Use across family information

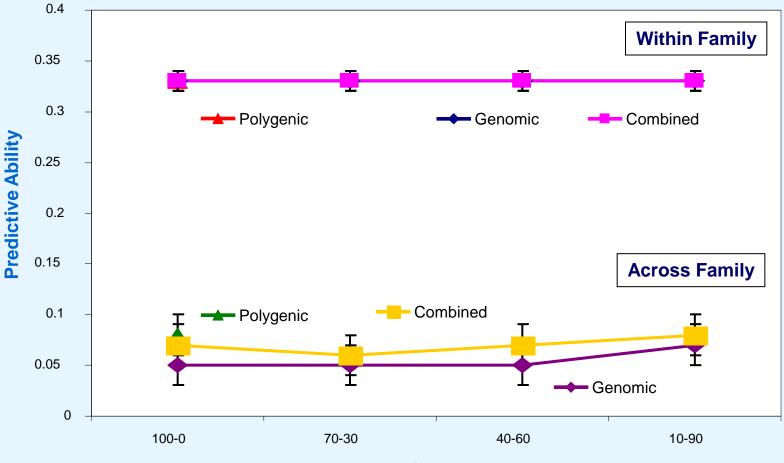


Variances: 6-Wk weight

mix	0 2 _a	σ ² _u	σ² _c	σ² _e	h² _a	h ² _u		
Model 1: Polygenic								
	-	58.4	31.3	21.1	-	0.53		
Model 2: Genomic								
100/0	42.3	-	39.0	35.8	0.36	-		
70/30	22.5	-	41.7	42.2	0.21			
40/60	21.9	-	41.8	42.3	0.21	-		
10/90	17.2	-	43.8	43.8	0.16	-		
Model 3: Combined								
100/0	34.1	29.3	33.1	22.5	0.29	0.25		
70/30	17.0	22.5	34.1	32.3	0.16	0.21		
40/60	16.9	22.9	34.2	32.0	0.16	0.22		
10/90	13.4	36.1	32.7	25.8	0.12	0.33		


Predictive ability (1)

6-Wk weight (h²=0.74)


Predictive ability (2)

Total Activity (h²=0.34)

Predictive ability (3)

Hematocrit % (h²=0.11)

Mixture

Increase in accuracy of model 2 (genomic) compared to model 1 (polygenic) with no mixture

Trait	Within family	Across Family
6-Wk weight	0.01	0.18
Total activity	0.10	0.32
Hematocrit %	0.01	-0.16

Conclusions

- Higher predictive ability for selection within family than across family
 - Shown by the higher within family predictability for all traits
- Genomic selection, when compared with polygenic selection, benefits the trait 'Total activity' when selection is across families
- Reduction in the proportion markers with an effect has little effect on predictive ability

Conclusions

- Higher increase in accuracy for selection across family than within family, especially with decreased heritability, except for the trait 'Hematocrit %'
 - Shown by the increased accuracy of the trait 'Total activity' compared to the trait '6-Wk weight'
- Based on these results it would seem that an increase in the number of markers selected for genomic selection would not automatically lead to an increase in predictive ability

Acknowledgements

- DNRG Kapell is supported by
 - SABRETRAIN Project, funding the Marie Curie Host Fellowships for Early Stage Research Training as part of the 6th Framework
 Programme of the European Commission

- Scottish Government, funding the research

Svccess through Knowledge