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MOTIVATION.
High dense SNP genotypes

High density genotyping technologies:
Cattle (54K SNPs); Equine (54K SNPs); Sheep (50K SNPs); Swine
(60K SNPs).

Great interest for the international scientific community.
Efforts in prediction of genome-enhanced breeding values.

Methods development
Genomic BLUP, Bayes A, Bayes B, RKHS, Bayesian LASSO,...
High marker density: Satisfactory results in terms of predictive
ability with most of them (Meuwissen et al., 2001; Gianola et al.,
2006; González-Recio et al., 2008; Hayes et al., 2009; Van Raden et al.,
2009)

Affordable individual cost, but expensive for large scale
genotyping within a population.
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MOTIVATION
Reducing genotyping cost in genomic selection

For preselecting parents of next generation. Genotyping whole
population.
Detect informative SNPs. Reducing redundancy of high dense
assays.
Increase predictive ability of methods used to predict G-BV for
low marker density.

More differences are expected to exist between methods.

Selection of informative SNPs
Bayesian LASSO (de los Campos et al ., 2008; Weigel et al ., 2009)
Machine Learning (Long et al ., 2007; Gonzalez-Recio et al ., 2008)

Boosting (Freund and Schapire, 1999; Friedman, 2001)

Useful for high dimensional regression problems doing some
sort of variable selection (Bühlmann and Yu, 2003)
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OBJECTIVE

TO TEST THE PERFORMANCE OF MACHINE LEARNING

ALGORITHMS (L2 BOOSTING) TO INCREASE

PREDICTIVE ABILITY OF PRESELECTION OF SNPS

FOR LOW MARKER DENSITY
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Methods

Ensemble methods: L2 BOOSTING (Freund and Schapire, 1999)

Forms a “committee” of M “weak” learners or predictors, each is
trained based on the performance of the previous one (AdaBoost).
Extended to regression by Friedman (2001).
Used for high dimension problems by Bühlmann and Yu (2003),
using an L2 Loss function, and doing some sort of covariate
selection.

May be interpreted as functional gradient descent technique.
May be viewed as a sequence of Hilbert spaces.
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Algorithm
1 Initialization. m = 0. Given data, set rm = y
2 Increase m by 1. Fit the “weak” learner to rm−1 using all covariates

separately
rm−1 = gp(xp)+ e

3 Do one-dimensional numerical search for the best predictor f (xp),
where

p = argminp

n

∑
i=1

(r(m−1)i −g(xi ,p))
2

4 Set rm = rm−1− f (xp), and repeat steps 2-4 until a stop criterion is
reached (Bühlmann, 2006).
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Yields an additive model whose terms are fitted in a stagewise
fashion.

rm−1 = gp(xp)+ e

gp(xp) = non-parametric kernel regression (Nadaraya-Watson,
1964; Gianola et al., 2006).

g(x) =

∫
yp(x,y)dy
p(x)

with
∫

yp(x,y)dy = 1
nh ∑

n
i=1 yiKh(X −xi ), and p(x) = 1

nh ∑
n
i=1 Kh(X −xi )
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Bayessian LASSO (Park and Casella, 2008)

Conditional Laplace prior distribution on covariate estimates
(λ = shrinkage parameter).
p(β |σ2

e ) = ∏
q
j=1

λ

2
√

σ2
e
e(−λ |βj |/σe)

SNPs were selected by larger absolute value estimate.

Each method offers a different bias-variance trade off.
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Simulated data

y = β1x1 +β2sin(x2)+β3sin(x2 · x3)+ e
β1 =−β2 =−β3

Plus 17 noise covariates
Two different broad sense heritability (medium-low and high)
scenarios were simulated
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Simulated data
Medium-low broad-sense heritability

Ranking of SNPs and MSE in the testing set

Bayesian LASSO
SNP1 –>rk1
SNP2 –>rk2
SNP3 –>rk20
MSE in testing set: 1.28

Boosting
SNP1 –>rk2
SNP2 –>rk1
SNP3 –>rk7
MSE in testing set: 1.15
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Simulated data
Highbroad-sense heritability

Ranking of SNPs and MSE in the testing set
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Boosting outperformed Bayesian LASSO in the simulations

Ranking of SNPs
Predictive ability
More relevant for large non-additive effects
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Real data

Phenotypes (y) = productive lifetime PTA
Genotypes (Xβ ) = 32,611 SNPs

Provided by USDA-ARS Beltsville Agricultural Research Center
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Real data
Predictive ability. MSE in testing set.

Bayesian LASSO.
MSE regarding number of SNPs selected to make predictions
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Real data
Predictive ability. MSE in testing set.

Bayesian LASSO and Non-parametric Boosting.
MSE regarding number of SNPs selected to make predictions

MSE in the testing set

SNPs selected or iteration
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Bayesian LASSO
NP−Boosting
min MSE with Bayesian LASSO

optimal iteration for L2-Boosting = 92 (90 SNPs)
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Real data
Predictive ability. MSE in testing set.

Bayesian LASSO showed larger predictive ability with larger
number of markers.

Converge to the nadir with >10,000 SNPs.

Boosting showed equal MSE with 90 SNPs than Bayesian
LASSO with 1200 markers.
Boosting presented a more rapid decrease on MSE with
inclusion of subsequent markers.
at equal amount of SNPs (90), Boosting reduced MSE by 14%
regarding Bayesian LASSO with 90 SNPs.
Bayesian LASSO with 32K SNPs reduced MSE by 27%
regarding Boosting with 90 SNPs, but using 35,000% more
markers.
Bayesian LASSO showed some bias at small number of
preselected SNPs.
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Applications in genomic selection
Use Bayessian LASSO for genome-enhanced EBV with
whole-genome genotypes.
Boosting presents some advantages at low density markers.

May enhance predictive ability in small populations.
...also in association studies.
Better bias-variance trade off.
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Further considerations and future jobs

Several stopping criteria exist for boosting, and respective
behaviours could be tested.
Boosting with non-parametric learner is, so far, highly
computing time demanding, but more efficient computational
strategies might be developed. Parallelization dream.
Other weak learners may be used.
L2-Boosting performance should be compared against other
methods: RKHS, Bayes B and more traditional aproaches.
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Appendix

MSE in the testing set

SNPs selected or iteration
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