Use of the Elastic-Net algorithm for genomic selection in dairy cattle

P. Croiseau, F. Guillaume, S. Fritz and V. Ducrocq

ALIMENTATION
AGRICULTURE
ENVIRONNEMENT

EAAP: 24-27 August 2009

Genetic context:

- 54K SNP array available in dairy cattle
 - makes possible to envision the use of genomic prediction instead of the classical genetic evaluations in selection programmes (polygenic model)
- However, this genomic prediction requires :
 - ➤ to achieve a regression using all SNP together
 - to deal with a p >> n problem
 - > to perform the analysis in a limited time (1 or 2 days /trait)

Variable Reduction methods:

- It is known that not all the SNP available are involved in the trait of interest
 - The idea is to select only the SNP which are involved rather than to estimate the effects of the complete set of SNP
- Here, we focus on penalized regression approaches:
 - Ridge Regression
 - > Lasso
 - Elastic-Net (EN)

Penalized regression approaches:

Ridge Regression :

$$\hat{\beta} = \arg\min \left\{ \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \lambda \sum_{i} \beta_i^2 \right\}$$

Lasso :

$$\hat{\beta} = \arg\min \left\{ \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \mu \sum_{j} |\beta_j| \right\}$$

penalty

- Zou & Hastie show that :
 - Ridge Regression retains all the predictors
 - Lasso retains the most significant predictors and removes the others

Elastic-Net: a combination of RR and Lasso

$$\hat{\beta} = \arg\min \left\{ \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \lambda \left(\alpha \sum_{j} \beta_j^2 + (1 - \alpha) \sum_{j} |\beta_j| \right) \right\}$$
RR LASSO

- $\triangleright \lambda$: penalty intensity
- $\Rightarrow \alpha = 0 \Rightarrow LASSO$
- $\triangleright \alpha = 1 \rightarrow RR$
- The method depends on 2 parameters :
 - $\rightarrow \alpha \rightarrow [0; 0.1; 0.2; ...; 1]$
 - $> \lambda \rightarrow [0;5;10;...;100]$

DATA

- 2 breeds studied : Montbéliarde and Holstein
 - Use of DYD (Daughter Yield Deviation) :

Average of the daughters' performance adjusted for fixed and non genetic random effects of the daughters and for the genetic effects of the bull's mates

	Montbéliarde	Holstein
Training step	694	1827
Validation step	227	540

DATA

- Complete data required
 - Missing data are imputed using DualPhase (Druet et al.)

	number of SNP			
MAF	Montbéliarde	Holstein		
5 %	38959	41101		

Different definitions of a LRT peak:

- Size of the window:
 - \checkmark ±25, ±50, ±100 and ±200
- LRT threshold:
 - ✓ 0, 1, 3, 5 and 9

Between 20 and 500 LRT peaks identified

ALIMENTATION AGRICULTURE

100

peaks identified

Analysis

- Measure of the quality of the predicted DYD :
 - > Correlation between:

DYD observed in 2008 on the animals of the validation set and DYD estimated on these animals using the coefficients calculated using only the animals from the training set

- We test all combinations of :
 - > Preselection criteria of SNP (window size and LRT threshold)
 - \triangleright Elastic-Net parameters (α, λ)

Results (of best combination for each trait)

Montbéliarde breed :

Holstein breed:

Results

Montbéliarde breed:

	Milk	Fat kg	Protein kg	Fat %	Protein %
Elastic-Net without preselection	0.362	0.374	0.404	0.508	0.364
Elastic-Net with preselection	0.493	0.469	0.549	0.614	0.392
BLUP polygenic *	0.273	0.355	0.276	0.372	0.214
french MAS approach *	0.420	0.438	0.383	0.579	0.543

Holstein breed:

	Milk	Fat kg	Protein kg	Fat %	Protein %
Elastic-Net without preselection	0.400	0.436	0.280	0.741	0.591
Elastic-Net with preselection	0.443	0.503	0.373	0.734	0.635
BLUP polygenic *	0.423	0.317	0.330	0.449	0.390
french MAS approach *	0.520	0.532	0.459	0.755	0.673

^{*} F. Guillaume et al.

ALIMENTATION
AGRICULTURE
ENVIRONNEMENT

Elastic-Net parameters

- Best results were obtained using :
 - ➤ a window size of ±50 SNP and a LRT threshold of 5 for the preselection
- Most of the time, the best set of parameters for the Elastic Net is with:
 - $> \lambda = 4 15$ (relatively strong intensity of penalization)
 - $> \alpha = 0.1 0.3$, close to a full Lasso approach
- For both breeds, around 500 SNP with non-null effect
- Worst case situation (with 500 LRT peaks, i.e. with 25000 SNP) tested in less than one day

Conclusion

- The Elastic-Net approach shows:
 - Interesting results in Montbéliarde breed
 - Need further investigation for the Holstein breed
- Other improvements need to be investigated
 - Haplotype vs Allelic coding
 - Addition of familial information (as in the French MAS approach)
 - Comparison to other approaches such as Bayes A, B, ... is under way...

