Genomic relationship matrix when some animals are not genotyped

(S 28)

Ole F. Christensen and Mogens S. Lund Faculty of Agricultural Sciences, Aarhus University E-mail: OleF.Christensen@agrsci.dk

EAAP 2009, Barcelona

Genomic prediction models

- Most approaches based on estimating effects of different SNPs (in a Bayesian setting using McMC) and obtaining EBVs by summing effects.
- □ Some challenges are :
 - ▷ Computational (speed, mixing and convergence of McMC),
 - Integration of all information (using EBV or DYD as response, blending pure genomic EBV with traditional EBV).
- \Box The approach here is different:
 - \triangleright Markers used to construct a relationship matrix G.
 - ▷ EBV are BLUPs in a linear mixed model.
 - Integration/blending of information by : 1) extending G to all animals, 2) including a polygenic effect.

Genomic Relationship matrix

□ The Genomic relationship matrix G based on SNPs (from van Raden, 2008):

$$G = (m-p)(m-p)^T/s$$

 \Box where

$$m_{ij} = \begin{cases} -1 & g_{ij} = 11 \\ 0 & g_{ij} = 12 \\ 1 & g_{ij} = 22 \end{cases}$$

$$p_j = 2\rho_j - 1, \quad s = 2\sum_j \rho_j (1 - \rho_j)$$

 $\Box \rho_j$ allele-frequency of allele *j*.

Extend G to non-genotyped animals: motivation

 \Box Model :

$$y = X\beta + a + g + e$$

where

$$a \sim N(0, \sigma_a^2 A), \quad g \sim N(0, \sigma_g^2 G^*)$$

 \Box Need genomic values g for all animals.

 \Box Therefore, need to extend G to all animals (G^*).

 \Box A combined GEBV : $\hat{g} + \hat{a}$ for all animals.

Extend G to non-genotyped animals

 \Box A joint model for genomic value and markers:

$$[g \mid M] \sim N(0, \sigma_g^2 (M - p)(M - p)^T / s)$$

$$E[M_j] = p_j 1, \quad Var[M_j] = 2\rho_j (1 - \rho_j) A$$

(based on idea by Gengler et al. 2007 to infer missing genotypes).

 $\hfill\square$ Individuals with missing and observed genotypes

$$M = \begin{bmatrix} m^{obs} \\ M^{miss} \end{bmatrix}, \quad A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix},$$

Extend G to non-genotyped animals

□ Marginalisation (integration) gives

 $E[g \mid m^{obs}] = 0,$

$$\begin{aligned} \operatorname{Var}[g \mid m^{obs}] &= \sigma_g^2 \begin{bmatrix} G & GA_{11}^{-1}A_{12} \\ A_{21}A_{11}^{-1}G & A_{21}A_{11}^{-1}GA_{11}^{-1}A_{12} + A_{22} - A_{21}A_{11}^{-1}A_{12} \\ &= \sigma_g^2 G^*. \end{aligned}$$

□ Same extension as Legarre, Augilar and Misztal (2009, to appear in J. Dairy Sci.)

Add a polygenic effect

$$y = X\beta + a + g + e$$

where

$$a \sim N(0, \sigma_a^2 A), \quad g \sim N(0, \sigma_g^2 G^*)$$

□ Markers may not capture all genetic differences.

 \Box Combined genetic value : $\tilde{g} = g + a$.

$$\Box$$
 Polygenic weight $w = \sigma_a^2/(\sigma_a^2 + \sigma_g^2)$.

□ Variance

$$\operatorname{Var}[\tilde{g}] = \sigma_{\tilde{g}}^2((1-w)G^* + wA) = \sigma_{\tilde{g}}^2 G_w^*$$

Sparse inverse

 $(G_w^*)^{-1} = \begin{bmatrix} G_w^{-1} - A_{11}^{-1} & 0\\ 0 & 0 \end{bmatrix} + A^{-1}.$

where

$$G_w = (1 - w)G + wA_{11}.$$

This is a sparse matrix !!

- \Box Direct computation of A^{-1} in sparse format is well-known.
- \Box A_{11} can be computed from A^{-1} using sparse matrix computation.
- \Box G_w is invertible (even G is often not full rank).

Inference using Sparse inverse

- Parameter estimation using AI-REML (based on solving sparse MME) implemented in software DMU.
- □ Prediction by solving sparse MME (implemented in DMU)
- \Box Polygenic weight w estimated from data (but w > 0).

Simulation study

Inspired by a nucleous pig breeding scheme (simplified).

- \Box 150 boars and 1500 sows produce 15000 offspring (50 % males).
- For next generation: 150 males selected based on phenotype, 1500 females selected randomly.
- \Box 5 generations with phenotype on all males (7500*5).
- \Box SNP panel of size 5000, and 500 true QTLs.
- □ The 150*3 selected males in generation 3, 4, and 5 are genotyped.
- \Box The 150 males in generation 0 (no phenotype) are genotyped.
- \Box 300 males in generation 6 (no phenotype) are genotyped.

Simulation study

- □ 46950 animals in pedigree
- □ 37500 animals with phenotype
- \Box 900 animals with genotype
- \Box 450 animals with both genotype and phenotype.
- Genotypes of 150 base animals used for allele frequencies. But also contain information about unknown genotype of other animals.
- □ Genotypes of 300 selection candidates contain information about the (unknown) genotypes of their mothers.

Simulation study - results

Estimate weight on poygenic effect

- \Box Estimated polygenic effect is about 0.
- \Box For computational reasons, we use $\hat{w}=0.01.$

Simulation study - results

 \Box Estimated parameters (with w = 0.01):

$$\sigma_{\tilde{g}}^2 = 4.16, \quad \sigma_e^2 = 16.22$$

 \Box Predictions,

$$Cor(GEBV, trueBV) = 0.660$$

- For comparison, an alternative approach : Analyse 600 animals (generation 0, 3,4,5) where EBV (computed in an animal model) is response, and predict 300 genotyped animals.
 - \triangleright Estimated parameters (with w = 0.01):

$$\sigma_{\tilde{g}}^2 = 7.56, \quad \sigma_e^2 = 0.069$$

▷ Predictions,

$$Cor(GEBV, trueBV) = 0.587$$

Discussion

 \Box Using the extended G :

- No preprocessing of phenotypes to EBVs or DYDs for a genomic selection model (causing possible bias).
- ▷ Improves prediction.
- □ Equal weight on markers (alternative: some areas high weight).
- □ Computation of allele-frequencies in founders is an issue.
- $\hfill\square$ The computational bottlenecks for the methods seem to be :
 - ▷ The computation of G, (computing time: $O(n_{obs}^2 n_{snp})$).
 - ▷ The computation $(G_w)^{-1}$, (computing time: $O(n_{obs}^3)$).
 - ▷ The storage of G, $(O(n_{obs}^2))$.