

Calculate relationships using pedigree and marker information - What to combine into a single estimator?

Session 28 Poster 18

SPW

E. Bömcke^{1,2}, M. Szydlowski^{1,3} and N. Gengler^{1,4}

¹ Gembloux Agricultural University, Gembloux, Belgium, ² F.R.I.A., Brussels, Belgium, ³ Poznań University of Life Sciences, Poznań, Poland, ⁴ National Fund for Scientific Research, Brussels, Belgium

Corresponding author e-mail: bomcke.e@fsagx.ac.be

Implementing conservation strategies need the knowledge of relationships within the concerned population, for example to measure and manage intra-breed genetic variability

Objective

Develop a new method to estimate relationship by combining molecular with pedigree data into a single estimator for situations, where neither pedigree nor molecular data are complete.

Methods

What to combine?

- → Regressions between:
- Additive relationship coefficient (a_{xv}) and total allelic relationship (ta_{xv})
- Wright relationship coefficient (r_{ped,xy}) and transformed $ta_{xy} (r_{mol,xy})$
- → Objective: determine the influence of:
- Inbreeding
- Markers quality (measured by PIC)

S How to combine?

→ use of partial least square regression (SAS) For more information: presentation 11, Session 28

Conclusions

3 Inbreeding

- · Has an influence on:
 - √ regression parameters
 - ✓ correlation value
- Use of Wright relationship coefficient did not allow to minimize this influence but decreased the SD of residuals

Quality of marker

- Choose markers according to PIC is useless
 - ✓ For all parameters, no significant differences. were observed when only the most informative markers were used

Data simulation

S Parameters

 Pedigree: 20 to 25 founders born before 1907, 100 years of simulation with reproducing and living parameters close to the one of the Skyros pony (an endangered Greek breed) - 5 repetitions

 Genotypes: 25 microsatellites with equal allele frequencies in founder population - 10 repetitions

- Simulated pedigree:
- √ 750 to 1134 animals in pedigree 182 to 277 living animals in 2007
- ✓ Mean inbreeding: from 13.58 to 33.08 % Maximum inbreeding: from 28.03 to 45.99 %
- Simulated genotypes:
- ✓ Mean PIC /pedigree: from 0.53 (most inbred) pedigree) to 0.71(less inbred pedigree)
- ✓ Per marker: Minimum = 0.06 / Maximum = 0.85

Results

8 Regressions

- Equation: ped coeff = a*mol coeff + b
 - ✓ a between 0.09 and 0.38
 - √ b between 0.15 and 0.22
- · No significant differences between the value obtained with a_{xy} / ta_{xy} and with $r_{ped,xy}$ / $r_{mol,xy}$
- Significant differences between pedigree linked to differences in inbreeding level

∞ Correlations

- Mean correlation coefficients between pedigree and marker -based coefficient from 0.34 to 0.54
- In pedigree: Min = 0.28 / Max = 0.58
- Again, no significant differences between the value obtained between a_{xy} / ta_{xy} and between $r_{ped,xy}$ / $r_{mol,xy}$ and significant differences between pedigree linked to inbreeding level

8 Residuals

- SD between 0.032 and 0.059
- Significant differences between the value obtained with a_{xy} / ta_{xy} and with $r_{ped,xy}$ / $r_{mol,xy}$ and between pedigree but not linked to inbreeding level

Acknowledgements: The first author who is F.R.I.A Fellow acknowledges this support, FNRS and the Walloon Region (project D31-1168)